DOI QR코드

DOI QR Code

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica

남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구

  • Jung, Jaewoo (Department of Earth System Sciences, Yonsei University) ;
  • Park, Youngkyu (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Kee-Hwan (Department of Earth System Sciences, Yonsei University) ;
  • Hong, Jongyong (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Jaeil (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Yoo, Kyu-Cheul (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Lee, Minkyung (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Kim, Jinwook (Department of Earth System Sciences, Yonsei University)
  • 정재우 (연세대학교 지구시스템과학과) ;
  • 박영규 (연세대학교 지구시스템과학과) ;
  • 이기환 (연세대학교 지구시스템과학과) ;
  • 홍종용 (연세대학교 지구시스템과학과) ;
  • 이재일 (극지연구소 극지고환경연구부) ;
  • 유규철 (극지연구소 극지고환경연구부) ;
  • 이민경 (극지연구소 극지고환경연구부) ;
  • 김진욱 (연세대학교 지구시스템과학과)
  • Received : 2019.08.29
  • Accepted : 2019.09.20
  • Published : 2019.09.30

Abstract

A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

2015년 극지연구소의 로스해 지질탐사 동안 로스해와 남빙양이 접하는 대륙대 지역에 위치한 정점에서 롱코어(RS15-LC48)를 시추하였다. 이 코어에서 지난 홀로세와 플라이스토세 동안 퇴적된 해양 퇴적물을 구성하는 점토광물의 특성과 기원지를 규명하고자 퇴적물의 퇴적상, 입도분포, 점토광물의 종류와 함량비, 일라이트의 결정도 지수와 화학지수를 분석하였다. 퇴적학적 특성에 따라 크게 네 개의 퇴적단위들로 구분되며 이들은 플라이스토세부터 홀로세 시기에 걸친 여러 번의 빙하기/간빙기 퇴적작용에 의해 형성된 것으로 해석된다. 퇴적물은 주로 사질 점토와 실트질 점토, 빙하 쇄설물들로 구성되어 있다. 깊이에 따른 퇴적물의 입도 분포와 모래 입자의 함량 변화는 대자율의 변화와 매우 유사하게 나타났다. 또한 점토광물의 상대적 함량비는 전체적으로 일라이트(52.7 %)가 가장 우세하고 스멕타이트(27.7 %), 녹니석(11.0 %), 카올리나이트(8.6 %) 순서로 나타났으며, 석영, 사장석 등의 화산 활동 기원 초생광물도 함께 수반되어 나타났다. 일라이트와 녹니석 함량의 증가와 해당 깊이에서의 일라이트 결정도지수와 화학지수는 퇴적물이 주로 로스해 빙상 하부에 위치한 남극 종단산맥의 기반암으로부터 기인했음을 지시한다. 반면 스멕타이트의 함량은 다른 점토광물의 변화 양상과 반대로 나타나는데, 이는 간빙기 동안 로스해 서안의 빅토리아 랜드 연안에서 북동쪽으로 흐르는 해류에 의해 스멕타이트가 추가적으로 운반되어 퇴적된 것으로 사료된다.

Keywords

References

  1. Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S., and Mosola, A.B. (2002) The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: A review. Quaternary Science Reviews, 21(1-3), 49-70. https://doi.org/10.1016/S0277-3791(01)00083-X
  2. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7), 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  3. Budillon, G., Castagno, P., Aliani, S., Spezie, G., and Padman, L. (2011) Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep Sea Research Part I: Oceanographic Research Papers, 58(10), 1002-1018. https://doi.org/10.1016/j.dsr.2011.07.002
  4. Chamley, H. (1989) Clay Mineralogy. Springer Verlag, Berlin, 623p.
  5. Diekmann, B. and Wopfner, H. (1996) Petrographic and diagenetic signatures of climatic change in peri-and postglacial Karoo sediments of SW Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 125(1-4), 5-25. https://doi.org/10.1016/0031-0182(95)00084-4
  6. Domack, E.W., Jacobson, E.A., Shipp, S., and Anderson, J.B. (1999) Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2-sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111(10), 1517-1536. https://doi.org/10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2
  7. Dong, H., Kukkadapu, R.K., Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., and Kostandarithes, H.M. (2003) Microbial reduction of structural Fe(III) in illite and goethite. Environmental Science & Technology, 37(7), 1268-1276. https://doi.org/10.1021/es020919d
  8. Drewry, D.J. (1983) The surface of the Antarctic ice sheet. Antarctica: Glaciological and Geophysical Folio.
  9. Eberl, D. and Velde, B. (1989) Beyond the Kübler index. Clay Minerals, 24(4), 571-577. https://doi.org/10.1180/claymin.1989.024.4.01
  10. Ehrmann, W. (1998) Lower Miocene and Quaternary clay mineral assemblages from CRP-1. Terra Antartica, 5(3), 613-619.
  11. Ehrmann, W., Hillenbrand, C.-D., Smith, J.A., Graham, A.G., Kuhn, G., and Larter, R.D. (2011) Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: Clay mineral assemblage evidence. Antarctic Science, 23(5), 471-486. https://doi.org/10.1017/S0954102011000320
  12. Ehrmann, W., Setti, M., and Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 229(3), 187-211. https://doi.org/10.1016/j.palaeo.2005.06.022
  13. Ehrmann, W.U., Melles, M., Kuhn, G., and Grobe, H. (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107(4), 249-273. https://doi.org/10.1016/0025-3227(92)90075-S
  14. Franke, D. and Ehrmann, W. (2010) Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 286(1-2), 55-65. https://doi.org/10.1016/j.palaeo.2009.12.003
  15. Ha, S., Khim, B.-K., Cho, H.G., and Colizza, E. (2018) Origin of clay minerals of core RS14-GC2 in the continental slope to the east of the Pennell-Iselin Bank in the Ross Sea, Antarctica. Journal of the Mineralogical Society of Korea, 31(1), 1-12. https://doi.org/10.9727/jmsk.2018.31.1.1
  16. Hillenbrand, C.-D., Ehrmann, W., Larter, R.D., Benetti, S., Dowdeswell, J., Cofaigh, C.O., Graham, A.G., and Grobe, H. (2009) Clay mineral provenance of sediments in the southern Bellingshausen Sea reveals drainage changes of the West Antarctic Ice Sheet during the Late Quaternary. Marine Geology, 265(1), 1-18. https://doi.org/10.1016/j.margeo.2009.06.009
  17. Howat, I.M. and Domack, E.W. (2003) Reconstructions of western Ross Sea palaeo-ice-stream grounding zones from high-resolution acoustic stratigraphy. Boreas, 32(1), 56-75. https://doi.org/10.1111/j.1502-3885.2003.tb01431.x
  18. Hughes, T. (1973) Is the West Antarctic ice sheet disintegrating? Journal of Geophysical Research, 78(33), 7884-7910. https://doi.org/10.1029/JC078i033p07884
  19. Jaboyedoff, M., Bussy, F., Kübler, B., and Thelin, P. (2001) Illite "crystallinity" revisited. Clays and Clay Minerals, 49(2), 156-167. https://doi.org/10.1346/CCMN.2001.0490205
  20. Jeong, G. and Yoon, H. (2001) The origin of clay minerals in soils of King George Island, South Shetland Islands, West Antarctica, and its implications for the clay-mineral compositions of marine sediments. Journal of Sedimentary Research, 71(5), 833-842. https://doi.org/10.1306/2DC4096C-0E47-11D7-8643000102C1865D
  21. Mao, C., Chen, J., Yuan, X., Yang, Z., Balsam, W., and Ji, J. (2010) Seasonal variation in the mineralogy of the suspended particulate matter of the lower Changjiang River at Nanjing, China. Clays and Clay Minerals, 58(5), 691-706. https://doi.org/10.1346/CCMN.2010.0580508
  22. Ohneiser, C., Yoo, K.-C., Albot, O.B., Cortese, G., Riesselman, C., Lee, J.I., McKay, R., Bollen, M., Lee, M.K., and Moon, H.S. (2019) Magneto-biostratigraphic age models for Pleistocene sedimentary records from the Ross Sea. Global and Planetary Change, 176, 36-49. https://doi.org/10.1016/j.gloplacha.2019.02.013
  23. Petschick, R., Kuhn, G., and Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Marine Geology, 130(3-4), 203-229. https://doi.org/10.1016/0025-3227(95)00148-4
  24. Radok, U. (1985) The Antarctic ice. Scientific American, 253(2), 98-105. https://doi.org/10.1038/scientificamerican0885-98
  25. Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B. (2013) Ice-shelf melting around Antarctica. Science, 341(6143), 266-270. https://doi.org/10.1126/science.1235798
  26. Salvi, C., Busetti, M., Marinoni, L., and Brambati, A. (2006) Late Quaternary glacial marine to marine sedimentation in the Pennell Trough (Ross Sea, Antarctica). Palaeogeography, Palaeoclimatology, Palaeoecology, 231(1-2), 199-214. https://doi.org/10.1016/j.palaeo.2005.07.034
  27. Shipp, S., Anderson, J., and Domack, E. (1999) Seismic signature of the Late Pleistocene fluctuation of the West Antarctic Ice Sheet system in Ross Sea: A new perspective, Part I. Geological Society of America Bulletin, 111, 1486-1516. https://doi.org/10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2
  28. Wang, Q. and Yang, S. (2013) Clay mineralogy indicates the Holocene monsoon climate in the Changjiang (Yangtze River) Catchment, China. Applied Clay Science, 74, 28-36. https://doi.org/10.1016/j.clay.2012.08.011

Cited by

  1. Multibeam Bathymetry and Distribution of Clay Minerals on Surface Sediments of a Small Bay in Terra Nova Bay, Antarctica vol.11, pp.1, 2019, https://doi.org/10.3390/min11010072