DOI QR코드

DOI QR Code

Cyclic fatigue resistance of M-Pro and RaCe Ni-Ti rotary endodontic instruments in artificial curved canals: a comparative in vitro study

  • Received : 2019.07.10
  • Accepted : 2019.09.24
  • Published : 2019.11.30

Abstract

Objectives: To compare the flexural cyclic fatigue resistance and the length of the fractured segments (FLs) of recently introduced M-Pro rotary files with that of RaCe rotary files in curved canals and to evaluate the fracture surface by scanning electron microscopy (SEM). Materials and Methods: Thirty-six endodontic files with the same tip size and taper (size 25, 0.06 taper) were used. The samples were classified into 2 groups (n = 18): the M-Pro group (M-Pro IMD) and the RaCe group (FKG). A custom-made simulated canal model was fabricated to evaluate the total number of cycles to failure and the FL. SEM was used to examine the fracture surfaces of the fragmented segments. The data were statistically analyzed and comparisons between the 2 groups for normally distributed numerical variables were carried out using the independent Student's t-test. A p value less than 0.05 was considered to indicate statistical significance. Results: The M-Pro group showed significantly higher resistance to flexural cyclic fatigue than the RaCe group (p < 0.05), but there was no significant difference in the FLs between the 2 groups (p ≥ 0.05). Conclusions: Thermal treatment of nickel-titanium instruments can improve the flexural cyclic fatigue resistance of rotary endodontic files, and the M-Pro rotary system seems to be a promising rotary endodontic file.

Keywords

References

  1. Saunders Elizabeth M. Hand instrumentation in root canal preparation. Endod Topics 2005;10:163-167. https://doi.org/10.1111/j.1601-1546.2005.00127.x
  2. Stavileci M, Hoxha V, Gorduysus O, Tatar I, Laperre K, Hostens J, Kucukkaya S, Muhaxheri E. Evaluation of root canal preparation using rotary system and hand instruments assessed by micro-computed tomography. Med Sci Monit Basic Res 2015;21:123-130. https://doi.org/10.12659/MSM.891279
  3. Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi alloys - a review. Int Endod J 2018;51:1088-1103. https://doi.org/10.1111/iej.12924
  4. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031-1043. https://doi.org/10.1016/j.joen.2006.06.008
  5. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 2006;32:55-57. https://doi.org/10.1016/j.joen.2005.10.013
  6. Martin B, Zelada G, Varela P, Bahillo JG, Magan F, Ahn S, Rodriguez C. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J 2003;36:262-266. https://doi.org/10.1046/j.1365-2591.2003.00630.x
  7. Gao Y, Gutmann JL, Wilkinson K, Maxwell R, Ammon D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod 2012;38:398-401. https://doi.org/10.1016/j.joen.2011.11.004
  8. Gambarini G, Rubini AG, Al Sudani D, Gergi R, Culla A, De Angelis F, Di Carlo S, Pompa G, Osta N, Testarelli L. Influence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instruments. J Endod 2012;38:1408-1411. https://doi.org/10.1016/j.joen.2012.05.019
  9. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e106-e114. https://doi.org/10.1016/j.tripleo.2005.12.012
  10. Azimi S, Delvari P, Hajarian HC, Saghiri MA, Karamifar K, Lotfi M. Cyclic fatigue resistance and fractographic analysis of RaCe and Protaper rotary NiTi instruments. Iran Endod J 2011;6:80-86.
  11. Seeddent Co,. Ltd.: M-Pro rotary endodontic system. Available from: http://seeddent-com.sell.everychina.com/p-107759691-dental-mpro-files.html (updated 2019 Nov 5).
  12. AlShwaimi E. Cyclic fatigue resistance of a novel rotary file manufactured using controlled memory Ni-Ti technology compared to a file made from M-wire file. Int Endod J 2018;51:112-117. https://doi.org/10.1111/iej.12756
  13. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77-85. https://doi.org/10.1016/S0099-2399(97)80250-6
  14. Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 2004;30:722-725. https://doi.org/10.1097/01.DON.0000129963.42882.C9
  15. Shen Y, Cheung GS, Peng B, Haapasalo M. Defects in nickel-titanium instruments after clinical use. Part 2: fractographic analysis of fractured surface in a cohort study. J Endod 2009;35:133-136. https://doi.org/10.1016/j.joen.2008.10.013
  16. Yared GM, Bou Dagher FE, Machtou P. Cyclic fatigue of Profile rotary instruments after simulated clinical use. Int Endod J 1999;32:115-119. https://doi.org/10.1046/j.1365-2591.1999.00201.x
  17. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod 2009;35:1469-1476. https://doi.org/10.1016/j.joen.2009.06.015
  18. Elnaghy AM. Cyclic fatigue resistance of ProTaper Next nickel-titanium rotary files. Int Endod J 2014;47:1034-1039. https://doi.org/10.1111/iej.12244
  19. Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod 2014;40:1451-1453. https://doi.org/10.1016/j.joen.2014.02.020
  20. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod 2011;37:997-1001. https://doi.org/10.1016/j.joen.2011.03.023
  21. Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod 2000;26:414-417. https://doi.org/10.1097/00004770-200007000-00009
  22. Chang SW, Shim KS, Kim YC, Jee KK, Zhu Q, Perinpanayagam H, Kum KY. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of V taper 2 and V taper 2H rotary NiTi files. Scanning 2016;38:564-570. https://doi.org/10.1002/sca.21301
  23. Pedulla E, Plotino G, Grande NM, Pappalardo A, Rapisarda E. Cyclic fatigue resistance of four nickel-titanium rotary instruments: a comparative study. Ann Stomatol (Roma) 2012;3:59-63.
  24. Plotino G, Grand NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e60-e66.
  25. Capar ID, Ertas H, Arslan H. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments. Aust Endod J 2015;41:24-28. https://doi.org/10.1111/aej.12067
  26. Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod 2015;41:535-538. https://doi.org/10.1016/j.joen.2014.11.008
  27. Pedulla E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, Rapisarda E. Torsional and cyclic fatigue resistance of a new nickel titanium instrument manufactured by electrical discharge machining. J Endod 2016;42:156-159. https://doi.org/10.1016/j.joen.2015.10.004
  28. Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J Endod 2016;42:969-971. https://doi.org/10.1016/j.joen.2016.03.010
  29. Amato M, Pantaleo G, Abdellatif D, Blasi A, LoGiudice R, Iandolo A. Evaluation of cyclic fatigue resistance of modern nickel-titanium rotary instruments with continuous rotation. G Ital Endod 2017;31:78-82.
  30. Karataslioglu E, Aydin U, Yildirim C. Cyclic fatigue resistance of novel rotary files manufactured from different thermal treated nickel-titanium wires in artificial canals. Niger J Clin Pract 2018;21:231-235.
  31. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod 2013;39:163-172. https://doi.org/10.1016/j.joen.2012.11.005
  32. Srivastava S, Alghadouni MA, Alotheem HS. Current strategies in metallurgical advances of 450 rotary NiTi instruments: a review. J Dent Health Oral Disord Ther 2018;9:00333.
  33. Subramaniam V, Indira R, Srinivasan MR, Shankar P. Stress distribution in rotary nickel titanium instruments - a finite element analysis. J Conserv Dent 2007;10:112-118. https://doi.org/10.4103/0972-0707.43028
  34. Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. A comparison of cyclic fatigue between used and new Mtwo Ni-Ti rotary instruments. Int Endod J 2006;39:716-723. https://doi.org/10.1111/j.1365-2591.2006.01142.x
  35. Oh SR, Chang SW, Lee Y, Gu Y, Son WJ, Lee W, Baek SH, Bae KS, Choi GW, Lim SM, Kum KY. A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas: ability to resist cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:622-628. https://doi.org/10.1016/j.tripleo.2009.12.025
  36. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J 2006;39:755-763. https://doi.org/10.1111/j.1365-2591.2006.01143.x
  37. Cheung GS, Darvell BW. Fatigue testing of a NiTi rotary instrument. Part 2: fractographic analysis. Int Endod J 2007;40:619-625. https://doi.org/10.1111/j.1365-2591.2007.01256.x

Cited by

  1. The Effect of Taper and Apical Diameter on the Cyclic Fatigue Resistance of Rotary Endodontic Files Using an Experimental Electronic Device vol.11, pp.2, 2021, https://doi.org/10.3390/app11020863