References
- Saunders Elizabeth M. Hand instrumentation in root canal preparation. Endod Topics 2005;10:163-167. https://doi.org/10.1111/j.1601-1546.2005.00127.x
- Stavileci M, Hoxha V, Gorduysus O, Tatar I, Laperre K, Hostens J, Kucukkaya S, Muhaxheri E. Evaluation of root canal preparation using rotary system and hand instruments assessed by micro-computed tomography. Med Sci Monit Basic Res 2015;21:123-130. https://doi.org/10.12659/MSM.891279
- Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi alloys - a review. Int Endod J 2018;51:1088-1103. https://doi.org/10.1111/iej.12924
- Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031-1043. https://doi.org/10.1016/j.joen.2006.06.008
- Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 2006;32:55-57. https://doi.org/10.1016/j.joen.2005.10.013
- Martin B, Zelada G, Varela P, Bahillo JG, Magan F, Ahn S, Rodriguez C. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J 2003;36:262-266. https://doi.org/10.1046/j.1365-2591.2003.00630.x
- Gao Y, Gutmann JL, Wilkinson K, Maxwell R, Ammon D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J Endod 2012;38:398-401. https://doi.org/10.1016/j.joen.2011.11.004
- Gambarini G, Rubini AG, Al Sudani D, Gergi R, Culla A, De Angelis F, Di Carlo S, Pompa G, Osta N, Testarelli L. Influence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instruments. J Endod 2012;38:1408-1411. https://doi.org/10.1016/j.joen.2012.05.019
- Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e106-e114. https://doi.org/10.1016/j.tripleo.2005.12.012
- Azimi S, Delvari P, Hajarian HC, Saghiri MA, Karamifar K, Lotfi M. Cyclic fatigue resistance and fractographic analysis of RaCe and Protaper rotary NiTi instruments. Iran Endod J 2011;6:80-86.
- Seeddent Co,. Ltd.: M-Pro rotary endodontic system. Available from: http://seeddent-com.sell.everychina.com/p-107759691-dental-mpro-files.html (updated 2019 Nov 5).
- AlShwaimi E. Cyclic fatigue resistance of a novel rotary file manufactured using controlled memory Ni-Ti technology compared to a file made from M-wire file. Int Endod J 2018;51:112-117. https://doi.org/10.1111/iej.12756
- Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod 1997;23:77-85. https://doi.org/10.1016/S0099-2399(97)80250-6
- Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use. J Endod 2004;30:722-725. https://doi.org/10.1097/01.DON.0000129963.42882.C9
- Shen Y, Cheung GS, Peng B, Haapasalo M. Defects in nickel-titanium instruments after clinical use. Part 2: fractographic analysis of fractured surface in a cohort study. J Endod 2009;35:133-136. https://doi.org/10.1016/j.joen.2008.10.013
- Yared GM, Bou Dagher FE, Machtou P. Cyclic fatigue of Profile rotary instruments after simulated clinical use. Int Endod J 1999;32:115-119. https://doi.org/10.1046/j.1365-2591.1999.00201.x
- Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod 2009;35:1469-1476. https://doi.org/10.1016/j.joen.2009.06.015
- Elnaghy AM. Cyclic fatigue resistance of ProTaper Next nickel-titanium rotary files. Int Endod J 2014;47:1034-1039. https://doi.org/10.1111/iej.12244
- Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod 2014;40:1451-1453. https://doi.org/10.1016/j.joen.2014.02.020
- Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod 2011;37:997-1001. https://doi.org/10.1016/j.joen.2011.03.023
- Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod 2000;26:414-417. https://doi.org/10.1097/00004770-200007000-00009
- Chang SW, Shim KS, Kim YC, Jee KK, Zhu Q, Perinpanayagam H, Kum KY. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of V taper 2 and V taper 2H rotary NiTi files. Scanning 2016;38:564-570. https://doi.org/10.1002/sca.21301
- Pedulla E, Plotino G, Grande NM, Pappalardo A, Rapisarda E. Cyclic fatigue resistance of four nickel-titanium rotary instruments: a comparative study. Ann Stomatol (Roma) 2012;3:59-63.
- Plotino G, Grand NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e60-e66.
- Capar ID, Ertas H, Arslan H. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments. Aust Endod J 2015;41:24-28. https://doi.org/10.1111/aej.12067
- Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod 2015;41:535-538. https://doi.org/10.1016/j.joen.2014.11.008
- Pedulla E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, Rapisarda E. Torsional and cyclic fatigue resistance of a new nickel titanium instrument manufactured by electrical discharge machining. J Endod 2016;42:156-159. https://doi.org/10.1016/j.joen.2015.10.004
- Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J Endod 2016;42:969-971. https://doi.org/10.1016/j.joen.2016.03.010
- Amato M, Pantaleo G, Abdellatif D, Blasi A, LoGiudice R, Iandolo A. Evaluation of cyclic fatigue resistance of modern nickel-titanium rotary instruments with continuous rotation. G Ital Endod 2017;31:78-82.
- Karataslioglu E, Aydin U, Yildirim C. Cyclic fatigue resistance of novel rotary files manufactured from different thermal treated nickel-titanium wires in artificial canals. Niger J Clin Pract 2018;21:231-235.
- Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod 2013;39:163-172. https://doi.org/10.1016/j.joen.2012.11.005
- Srivastava S, Alghadouni MA, Alotheem HS. Current strategies in metallurgical advances of 450 rotary NiTi instruments: a review. J Dent Health Oral Disord Ther 2018;9:00333.
- Subramaniam V, Indira R, Srinivasan MR, Shankar P. Stress distribution in rotary nickel titanium instruments - a finite element analysis. J Conserv Dent 2007;10:112-118. https://doi.org/10.4103/0972-0707.43028
- Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. A comparison of cyclic fatigue between used and new Mtwo Ni-Ti rotary instruments. Int Endod J 2006;39:716-723. https://doi.org/10.1111/j.1365-2591.2006.01142.x
- Oh SR, Chang SW, Lee Y, Gu Y, Son WJ, Lee W, Baek SH, Bae KS, Choi GW, Lim SM, Kum KY. A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas: ability to resist cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:622-628. https://doi.org/10.1016/j.tripleo.2009.12.025
- Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J 2006;39:755-763. https://doi.org/10.1111/j.1365-2591.2006.01143.x
- Cheung GS, Darvell BW. Fatigue testing of a NiTi rotary instrument. Part 2: fractographic analysis. Int Endod J 2007;40:619-625. https://doi.org/10.1111/j.1365-2591.2007.01256.x
Cited by
- The Effect of Taper and Apical Diameter on the Cyclic Fatigue Resistance of Rotary Endodontic Files Using an Experimental Electronic Device vol.11, pp.2, 2021, https://doi.org/10.3390/app11020863