DOI QR코드

DOI QR Code

Exploring Learning Progression of Logical Thinking in Acid and Base Chemical Reactions

산과 염기 화학반응에서 논리 사고 학습발달단계 탐색

  • Received : 2019.05.25
  • Accepted : 2019.07.19
  • Published : 2019.10.20

Abstract

The purpose of this study was to explore the learning progression of logical thinking in acid and base chemical reactions and to evaluate its validity. For this purpose, we collected 387 participants in 9 schools of elementary, middle and high schools nationwide. The questionnaire developed in this study was composed of nine items. The questionnaire presented the acid and base reactants and products, and the students pictured their thoughts on how these substances change, and answered the reasons of their thoughts. Situation contexts of the questionnaire were divided into two groups: one kind of solute dissolved in a solvent, and two kinds of solute dissolved in a solvent. In this study, six levels of learning progression were assumed by combining material conservation logic, combination logic, proportion logic, and particle number conservation logic. By analyzing the data, Infit and Outfit values of Person reliability, Item reliability, MNSQ and ZSTD were obtained from the Rasch model. As a result of the analysis of data, it was found that lower levels of learning progression prevailed up to the younger grade students till $8^{th}$ grade. The higher levels of learning progression(Level 2~Level 5) prevailed up to the older grade students. However, higher levels of learning progression dropped sharply in Grade 12. The 5 level of learning progression was very low in all grades, and $9^{th}$ grade had highest percentage of students belonging to the 5 level. Interpretation of these unusual results suggests a future research related to explanation differences of textbooks.

이 연구에서는 산과 염기의 화학반응에 대한 학습발달을 논리 사고 발달단계에 근거하여 제시하고, 그 타당성을 알아보고자 하였다. 이를 위하여 전국의 7개 지역, 9개의 초등, 중등, 고등학교에서 387명을 편의표집하였다. 이 연구에서 개발한 설문지는 총 9문항이었으며, 산과 염기 반응물과 생성물을 제시하고 이 물질들이 어떻게 변화할지에 대한 자신의 생각을 그림으로 표현하고 그 이유를 적도록 구성하였다. 상황 맥락은 한 종류의 용질이 용매에 녹는 상황과 두 종류의 용질이 용매에 녹는 상황 등으로 구분하였다. 이 연구에서는 물질보존 논리, 조합 논리, 비례 논리, 입자 개수 보존 논리를 조합하여 총 6단계의 학습발달을 가정하였다. 자료를 분석하여 Rasch 모델로 Person reliability, Item reliability, MNSQ와 ZSTD의 Infit와 Outfit값을 구한 결과, 본 연구에서 가설적으로 제안한 논리 사고 학습발달단계가 타당함을 확인하였다. 자료의 분석 결과, 중학교 2학년까지는 낮은 단계의 사고가 저학년에서 더 우세하였다. 그리고 높은 단계의 사고(2단계에서 5단계)가 상대적으로 고학년에서 우세한 것으로 나타났다. 그러나 고등학교 3학년(Grade 12)에서 높은 단계의 사고가 급격하게 감소하였다. 그리고 가장 마지막 단계인 5단계의 사고는 모든 학년에서 매우 낮았으며, 학생들의 비율이 가장 높은 학년은 중학교 3학년으로 나타났다. 이러한 특이한 연구 결과에 대한 해석은 교과서의 서술 방식과 관련된 추후 연구 과제로 제안하였다.

Keywords

References

  1. Nakhleh, M. B. J. Chem. Educ. 1992, 69, 191. https://doi.org/10.1021/ed069p191
  2. Garnett, P. J.; Garnett, P. J.; Hackling, M. W. Stud. Sci. Educ. 1995, 25, 69. https://doi.org/10.1080/03057269508560050
  3. Taber, K. S. Int. J. Sci. Educ. 2000, 22, 399. https://doi.org/10.1080/095006900289813
  4. Taber, K. S. Int. J. Sci. Educ. 2008, 30, 1027. https://doi.org/10.1080/09500690701485082
  5. Talanquer, V. J. Chem. Educ. 2006, 83, 811. https://doi.org/10.1021/ed083p811
  6. Teo, T. W.; Goh, M. T.; Yeo, L. W. Chem. Educ. Res. Pract. 2014, 15, 470. https://doi.org/10.1039/C4RP00104D
  7. Gilbert, J. K.; Watts, D. M. Stud. Sci. Educ. 1983, 10, 61. https://doi.org/10.1080/03057268308559905
  8. Tumay, H. Chem. Educ. Res. Pract. 2014, 15, 366. https://doi.org/10.1039/C4RP00024B
  9. Tumay, H. Sci. Educ. 2016, 25, 21. https://doi.org/10.1007/s11191-015-9799-x
  10. Schmidt, H.-J. Int. J. Sci. Educ. 1991, 13, 459. https://doi.org/10.1080/0950069910130409
  11. Wandersee, J. H.; Mintzes, J. J.; Novak, J. D. Research on alternative conceptions in science. In Handbook of Research on Science Teaching and Learning; Gabel, D. L. Ed.; Macmillan Publishing Company: NY: 1994; pp 177-210.
  12. Sanger, M. J.; Greenbowe, T. J. J. Chem. Educ. 1999, 76, 853. https://doi.org/10.1021/ed076p853
  13. Schmidt, H. J.; Baumgartner, T.; Eybe H. J. Res. Sci. Teach. 2003, 40, 257. https://doi.org/10.1002/tea.10076
  14. Demircioglu, G.; Ayas, A.; Demircioglu, H. Chem. Educ. Res. Pract. 2005, 6, 36. https://doi.org/10.1039/B4RP90003K
  15. Gilbert, J. K.; Treagust D. F. Multiple Representations in Chemical Education: Springer: Dordrecht, 2009.
  16. Johnstone, A. H. J. Comput. Assist. Learn. 1991, 7, 75. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
  17. Johnstone, A. H. Chem. Educ. Res. Pract. 2000, 1, 9. https://doi.org/10.1039/A9RP90001B
  18. Jensen, W. B. J. Chem. Educ. 1998, 75, 679. https://doi.org/10.1021/ed075p679
  19. Hoffmann, R.; Laszlo P. Angew. Chem. Int. Ed. Engl. 1991, 30, 1. https://doi.org/10.1002/anie.199100013
  20. Cooper, M. M.; Underwood, S. M.; Hilley C. Z.; Klymkowsky, M. W. J. Chem. Educ. 2012, 89, 1351. https://doi.org/10.1021/ed300083a
  21. Talanquer, V. Chem. Educ. Res. Pract. 2018, 19, 998. https://doi.org/10.1039/C7RP00187H
  22. Chittleborough, G.; Treagust, D. F. Chem. Educ. Res. Pract. 2007, 8, 274. https://doi.org/10.1039/B6RP90035F
  23. Talanquer, V. Int. J. Sci. Educ. 2011, 33, 179. https://doi.org/10.1080/09500690903386435
  24. Taber, K. S. Chem. Educ. Res. Pract. 2013, 14, 156. https://doi.org/10.1039/C3RP00012E
  25. Ben-Zvi, R.; Eylon, B. S.; Silberstein, J. J. Chem. Educ. 1986, 63, 64. https://doi.org/10.1021/ed063p64
  26. Griffiths, A. K.; Preston, K. R. J. Res. Sci. Teach. 1992, 29, 611. https://doi.org/10.1002/tea.3660290609
  27. Chi, M. T. J. Learn. Sci. 2005, 14, 161. https://doi.org/10.1207/s15327809jls1402_1
  28. Lee, O.; Eichinger, D. C.; Anderson, C. W.; Berkheimer, G. D.; Blakeslee, T. D. J. Res. Sci. Teach. 1993, 30, 249. https://doi.org/10.1002/tea.3660300304
  29. Albanese, A.; Vicentini, M. Sci. Educ. 1997, 6, 251. https://doi.org/10.1023/A:1017933500475
  30. Rappoport, L. T.; Ashkenazi, G. Int. J. Sci. Educ. 2008, 30, 1585. https://doi.org/10.1080/09500690701447405
  31. Talanquer, V. Sci. Educ. 2008, 92, 96. https://doi.org/10.1002/sce.20235
  32. Cros, D.; Maurin, M.; Amouroux, R.; Chastrette, M.; Leber, J.; Fayol, M. J. Sci. Educ. 1986, 8, 305.
  33. Hand, B. M.; Treagust, D. F. Res. Sci. Educ. 1988, 18, 53. https://doi.org/10.1007/BF02356580
  34. Ross, M. Psy. Rev. 1989, 96, 341. https://doi.org/10.1037/0033-295X.96.2.341
  35. Zoller, U. J. Res. Sci. Teach. 1990, 27, 1053. https://doi.org/10.1002/tea.3660271011
  36. Ross, B.; Munby, H. Int. J. Sci. Educ. 1991, 13, 11. https://doi.org/10.1080/0950069910130102
  37. Nakhleh, M. B.; Krajcik, J. S. J. Res. Sci. Teach. 1994, 31, 1077. https://doi.org/10.1002/tea.3660311004
  38. Schmidt, R. Attention and Awareness in Foreign Language Learning 1995, 9, 1.
  39. Kousathana, M.; Demerouti, M.; Tsaparlis, G. Sci. Educ. 2005, 14, 173. https://doi.org/10.1007/s11191-005-5719-9
  40. Sheppard, K. Chem. Educ. Res. Pract. 2006, 7, 32. https://doi.org/10.1039/B5RP90014J
  41. Orgill, M.; Sutherland, A. Chem. Educ. Res. Prac. 2008, 9, 131. https://doi.org/10.1039/B806229N
  42. Ozmen, H.; Demircioglu, H.; Demircioglu, G. Comput. Educ. 2009, 52, 681. https://doi.org/10.1016/j.compedu.2008.11.017
  43. Artdej, R.; Ratanaroutai, T.; Coll, R. K.; Thongpanchang, T. Res. Sci. Tech. Educ. 2010, 28, 167. https://doi.org/10.1080/02635141003748382
  44. Cetin-Dindar, A.; Geban, O. Procedia-Social and Behavioral Sciences 2011, 15, 600. https://doi.org/10.1016/j.sbspro.2011.03.147
  45. McClary, L. M.; Bretz, S. L. Int. J. Sci. Educ. 2012, 34, 2317. https://doi.org/10.1080/09500693.2012.684433
  46. Nakhleh, M. B.; Mitchell, R. C. J. Chem. Educ. 1993, 70, 190. https://doi.org/10.1021/ed070p190
  47. Morgil, I.; Yavuz, S.; Oskay, O. O.; Arda, S. Chem. Educ. Res. Prac. 2005, 6, 52. https://doi.org/10.1039/B3RP90001K
  48. Cetin-Dindar, A.; Geban, O. J. Educ. Res. 2017, 110, 85. https://doi.org/10.1080/00220671.2015.1039422
  49. Hoe, K. Y.; Subramaniam, R. Chem. Educ. Res. Prac. 2016, 17, 263. https://doi.org/10.1039/C5RP00146C
  50. Voska, K. W.; Heikkinen, H. W. Journal of the National Association for Research in Science Teaching 2000, 37, 160. https://doi.org/10.1002/(SICI)1098-2736(200002)37:2<160::AID-TEA5>3.0.CO;2-M
  51. Bunce, D. M.; Gabel, D. J. Res. Sci. Teach. 2002, 39, 911. https://doi.org/10.1002/tea.10056
  52. Nyachwaya, J. M.; Mohamed, A. R.; Roehrig, G. H.; Wood, N. B.; Kern, A. L.; Schneider, J. L. Chem. Educ. Res. Prac. 2011, 12, 121. https://doi.org/10.1039/C1RP90017J
  53. Lin, J. W.; Chiu, M. H. Int. J. Sci. Educ. 2007, 29, 771. https://doi.org/10.1080/09500690600855559
  54. Furio-Mas, C.; Calatayud, M. L.; Guisasolac, J.; Furio- Gomeza, C. Int. J. Sci. Educ. 2005, 27, 1337. https://doi.org/10.1080/09500690500102896
  55. Yan, F.; Talanquer, V. Int. J. Sci. Educ. 2015, 37, 3066. https://doi.org/10.1080/09500693.2015.1121414
  56. Romine, W. L.; Todd, A. N.; Clark, T. B. Sci. Educ. 2016, 100, 1150. https://doi.org/10.1002/sce.21240
  57. Morell, L.; Collier, T.; Black, P.; Wilson, M. J. Res. Sci. Teach. 2017, 54, 1024. https://doi.org/10.1002/tea.21397
  58. Shea, N. A.; Duncan, R. G. J. Learn. Sci. 2013, 22, 7. https://doi.org/10.1080/10508406.2012.691924
  59. Roadrangka, V.; Yeany, R. H.; Padilla, M. J. In 56th Annual Meeting of the National Association for Res. Sci. Teach. 1983, 5-8.
  60. Inhelder, B.; Piaget, J. The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures, Psychology Press: 1958.
  61. Lawson, A. E. J. Res. Sci. Teach. 1978, 15, 11. https://doi.org/10.1002/tea.3660150103
  62. Stains, M.; Talanquer, V. Int. J. Sci. Educ. 2007, 29, 643. https://doi.org/10.1080/09500690600931129
  63. Creswell, J. W.; Miller, D. L. Theory Into Practice, 2000, 39, 124. https://doi.org/10.1207/s15430421tip3903_2
  64. Chung, H. J. Coach. Develop. 2005, 7, 133.
  65. Wright, B. D.; Linacre, J. M. Rasch Measurement Transactions. 1994, 8, 370.
  66. Duschl, R. A.; Schweingruber, H. A.; Shouse, A. W. Taking Science to School. Learning and Teaching Science in Grades K-8; National Academies Press: Washington, DC; 2007.
  67. National Research Council. How People learn: Brain, Mind, Experience, and School. Bransford, J. D., Brown, A. L., Cocking, R. R., Eds.; National Academy Press: Washington, DC, 2000.