DOI QR코드

DOI QR Code

Synthesis, Characterization and Determination of HOMO-LUMO of the Substituted 1,3,5-Triazine Molecule for the Applications of Organic Electronics

  • Pakkath, Rajeesh (School of Chemical Sciences, Kannur University, Payyanur Campus) ;
  • Reddy, Eeda Koti (Division of Chemistry, Department of Science and Humanities, Vignan, Foundation for Science, Technology and Research University-VFSTRU (Vignan's University)) ;
  • Kuriakose, Sheena (School of Chemical Sciences, Kannur University, Payyanur Campus) ;
  • Saritha, C (School of Chemical Sciences, Kannur University, Payyanur Campus) ;
  • Sajith, Ayyiliath M (Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University) ;
  • Karuvalam, Ranjith Pakkath (School of Chemical Sciences, Kannur University, Payyanur Campus) ;
  • Haridas, Karickal Raman (School of Chemical Sciences, Kannur University, Payyanur Campus)
  • Received : 2019.06.09
  • Accepted : 2019.07.18
  • Published : 2019.10.20

Abstract

The most important parameter of organic molecules for energy harvesting application focuses mainly on their band gap (HOMO-LUMO). In this report, we synthesized differently substituted 1,3,5-triazine based organic molecule which on future processing can be used in organic electronics like solar cells and OLED's. The energy gap of the synthesized novel analogue was calculated using cyclic voltammetry, UV-Visible spectroscopy and compared with density functional theory (DFT) studies.

Keywords

References

  1. Forrest, S. R.; Thompson, M. E. Chem. Rev. 2007, 107, 923. https://doi.org/10.1021/cr0501590
  2. Tessler, N.; Preezant, Y.; Rappaport, N.; Roichman, Y. Adv. Mater. 2009, 21, 2741. https://doi.org/10.1002/adma.200803541
  3. Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953. https://doi.org/10.1021/cr050143+
  4. Shirota, Y. J. Mater. Chem. 2005, 15, 75. https://doi.org/10.1039/B413819H
  5. Berggren, M.; Nilsson, D.; Robinson, N. D. Nature Materials 2007, 6, 3. https://doi.org/10.1038/nmat1817
  6. Cicoira, F.; Santato, C.; Adv. Funct. Mater. 2007, 17, 3421. https://doi.org/10.1002/adfm.200700174
  7. Fink, R.; Frenz, C.; Thelakkat, M.; Schmidt, H.-W. Macromolecules 1997, 30, 8177. https://doi.org/10.1021/ma970528x
  8. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. https://doi.org/10.1126/science.293.5532.1119
  9. Witte, G.; Woll, C. J. Mater. Res. 2004, 19, 1889. https://doi.org/10.1557/JMR.2004.0251
  10. Dimitrakopoulos, C. D. Advanced Semiconductor and Organic Nano-Techniques; Elsevier: 2003; pp 191-240.
  11. Pron, A.; Gawrys, P.; Zagorska, M.; Djurado, D.; Demadrille, R. Chem. Soc. Rev. 2010, 39, 2577. https://doi.org/10.1039/b907999h
  12. Etter, M. C. J. Phys. Chem. 1991, 95, 4601. https://doi.org/10.1021/j100165a007
  13. Shirota, Y. J. Mater. Chem. 2000, 10, 1. https://doi.org/10.1039/a908130e
  14. Chang, J.-F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Solling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Chem. Mater. 2004, 16, 4772. https://doi.org/10.1021/cm049617w
  15. Forrest, S. R. Nature 2004, 428, 911. https://doi.org/10.1038/nature02498
  16. Kietzke, T. Adv. OptoElec. 2007.
  17. Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924. https://doi.org/10.1557/JMR.2004.0252
  18. Al-Ibrahim, M.; Roth, H.-K.; Schroedner, M.; Konkin, A.; Zhokhavets, U.; Gobsch, G.; Scharff, P.; Sensfuss, S. Organic Electronics 2005, 6, 65. https://doi.org/10.1016/j.orgel.2005.02.004
  19. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551. https://doi.org/10.1002/adma.19950070608
  20. Gagne, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem. 1980, 19, 2854. https://doi.org/10.1021/ic50211a080
  21. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Gaussian 09, Revision D.1; Gaussain Inc.: Wallingford, CT, 2009.
  23. Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2010, 132, 114110. https://doi.org/10.1063/1.3359469
  24. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527