DOI QR코드

DOI QR Code

Computational study on prediction of electrical beam steering phenomenon of parametric array sound source

파라메트릭 어레이 음원의 전기적 빔 조향 현상 예측을 위한 수치 해석 기법 연구

  • 빈경훈 (포항공과대학교 기계공학과) ;
  • 엄원석 (연세대학교 기계공학과) ;
  • 문원규 (포항공과대학교 기계공학과)
  • Received : 2019.05.21
  • Accepted : 2019.07.05
  • Published : 2019.09.30

Abstract

The parametric array phenomenon refers to the generation of a high directivity low frequency wave from a small size radiation plate using the nonlinearity of the medium. In order to improve the usability of parametric array, the beam steering method of low frequency wave is researched, and the beam steering phenomenon is predicted easily using the PD (product directivity) model. However, the PD model can only be applied to Gaussian sources under quasi-linear conditions. Also, the prediction accuracy of low frequency wave beam width is poor. In this paper, a method for predicting the beam steering characteristics of a parametric array that can overcome the limitation of the PD model is investigated. For this purpose, the numerical analysis algorithm of the KZK (Khokhlov-Zabolotskaya-Kuzentsov) equation widely used for parametric array phenomenon prediction is improved. Thus, the beam steering characteristics are calculated by applying the electrical beam steering condition and comparing experimental results. As a result, the numerical analysis using the modified KZK equation algorithm in this study confirms that the beam steering phenomenon can be predicted even in a parametric array source that does not correspond to the quasi-linear condition.

파라메트릭 어레이란 매질의 비선형성을 이용하여 작은 크기의 방사판에서 고지향성 저주파음을 발생시키는 현상을 말한다. 이러한 파라메트릭 어레이의 유용성을 높이기 위해 저주파 음향 빔 조향 연구가 진행 되고 있으며, PD(Product Directivity) 모델을 이용하여 빔 조향 현상이 간편하게 예측되고 있다. 그러나 PD 모델은 준선형 조건에서 가우시안 음원만 적용이 가능하며, 저주파 음향 빔 폭의 예측 정확성이 떨어진다. 본 논문에서는 PD 모델의 한계를 극복할 수 있는 파라메트릭 어레이의 빔 조향 특성 예측 방법에 대해 연구하였다. 이를 위해 파라메트릭 어레이 현상 예측에 널리 사용되는 KZK(Khokhlov-Zabolotskaya-Kuzentsov) 방정식의 수치 해석 알고리즘을 개선하였다. 그리고 전기적 조향 조건을 적용하여 빔 조향 특성을 계산, 실험 결과와 비교 하였다. 그 결과 개선된 알고리즘을 이용하면 준선형 조건에 해당되지 않는 파라메트릭 어레이 음원에서도 저주파 빔 조향 특성 예측이 가능함을 확인하였다.

Keywords

References

  1. P. J. Westervelt, "Parametric acoustic array," J. Acoust. Soc. Am. 35, 535-537 (1963). https://doi.org/10.1121/1.1918525
  2. M. B. Bennett and D. T. Blackstock, "Parametric array in air," J. Acoust. Soc. Am. 57, 562-568 (1975). https://doi.org/10.1121/1.380484
  3. H. Lee, D. Kang, and W. Moon, "A micro-machined source transducer for a parametric array in air," J. Acoust. Soc. Am. 125, 1879-1893 (2009). https://doi.org/10.1121/1.3081385
  4. B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko, Nonlinear Underwater Acoustics (The American Institute of Physics, New York, 1987), pp. 77-83.
  5. I. O. Wygant, M. Kupnik, J. C. Windsor, W. M. Wright, M. S. Wochner, G. G. Yaralioglu, M. F. Hamilton, and B. T. Khuri-Yakub, "50 kHz capacitive micromachined ultrasonic transducers for generation of highly directional sound with parametric arrays," IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 56, 193-203 (2009). https://doi.org/10.1109/TUFFC.2009.1019
  6. D. Olszewski, F. Prasetyo, and K. Linhard, "Steerable highly directional audio beam loudspeaker," Proc. Interspeech, 137-140 (2005).
  7. W. S. Gan, J. Yang, K. S. Tan, and M. H. Er. "A digital beamsteerer for difference frequency in parametric array," IEEE. Trans. Audio. Speech. Lang. Process. 14, 1018-1025 (2006). https://doi.org/10.1109/TSA.2005.857786
  8. C. H. Lee, J. Bae, D. G. Paeng, J. Lee, and S. Kim, "Digital beamsteering system using acoustic transducer array," J. Acoust. Soc. Am. 129, 2675-2675 (2011).
  9. N. Tanaka and M. Tanaka, "Active noise control using a steerable parametric array loudspeaker," J. Acoust. Soc. Am. 127, 3526-3537 (2010). https://doi.org/10.1121/1.3409483
  10. C. Shi and W. S. Gan, "Grating lobe elimination in steerable parametric loudspeaker," IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 58, 437-450 (2011). https://doi.org/10.1109/TUFFC.2011.1821
  11. C. M. Darvennes and M. F. Hamilton, "Scattering of sound by sound from two Gaussian beams," J. Acoust. Soc. Am. 87, 1955-1964 (1990). https://doi.org/10.1121/1.399322
  12. M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics (Academic, San Diego, 1998), Chap. 8, pp. 233-261.
  13. C. Shi and W. S. Gan, "Product directivity models for parametric loudspeakers," J. Acoust. Soc. Am. 131, 1938-1945 (2012). https://doi.org/10.1121/1.3682035
  14. C. Shi and W. S. Gan, "Analysis and calibration of system errors in steerable parametric loudspeakers," Appl. Acoust. 73, 1263-1270 (2012). https://doi.org/10.1016/j.apacoust.2012.04.003
  15. Y. Lee, Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluids, (Ph. D. Thesis, The University of Texas at Austin, 1993).
  16. Y. Lee and M. F. Hamilton, "Time-domain modeling of pulsed finite-amplitude sound beams," J. Acoust. Soc. Am. 97, 906-917 (1995). https://doi.org/10.1121/1.412135
  17. X. Yang and R. O. Cleveland, "Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging," J. Acoust. Soc. Am. 177, 113-123 (2005).
  18. M. A. Averkiou, Y. S. Lee, and M. F. Hamilton, "Selfdemodulation of amplitude- and frequency-modulated pulses in a thermovisous fluid," J. Acoust. Soc. Am. 94, 2876-2883 (1993). https://doi.org/10.1121/1.407344
  19. Y. Hwang, Y. Je, H. Lee, J. Lee, C. Lee, W. Kim, and W. Moon, "A parametric array ultrasonic ranging sensor with electrical beam steering capability," Acta. Acust. United. Acust, 102, 423-427 (2016). https://doi.org/10.3813/AAA.918960
  20. W. S. Gan, J. Yang, and T. Kamakura, "A review of parametric acoustic array in air," Appl. Acoust. 73, 1211-1219 (2012). https://doi.org/10.1016/j.apacoust.2012.04.001
  21. M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics (Academic, San Diego, 1998), Chap. 3, pp. 41-63.
  22. F. J. Pompei, "The use of airborne ultrasonics for generating audible sound beams," J. Audio Eng. Soc. 47, 726-731 (1999).