DOI QR코드

DOI QR Code

Synthesis of Hydroxyapatite Using a Cationic Surfactant

양이온성 계면활성제를 이용한 수산화인회석 합성

  • Lee, Keunyoung (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of Chemistry and RINS, Gyeongsang National University)
  • 이근영 (경상대학교 화학과, 경상대학교 기초과학연구소) ;
  • 권기영 (경상대학교 화학과, 경상대학교 기초과학연구소)
  • Received : 2019.09.09
  • Accepted : 2019.09.25
  • Published : 2019.10.10

Abstract

Hydroxyapatite (HAP) containing hexadecyltrimethylammonium chloride (CTAC) as a cationic surfactant was prepared by a precipitation method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and micropore physisorption analyzer were used for characterizing the crystal phase, morphology and specific surface area of HAP and CTAC-HAP. After thermal treatment, the specific surface area of both pure HAP and CTAC-HAP were reduced. The sharp rod morphology of CTAC-HAP was changed into a round shape with a smaller aspect ratio after the heat treatment. The morphological change by thermal treatment was also observed in pure HAP. Therefore, the morphological change and decrease of the specific surface area suggested that pores from the removal of CTAC during thermal treatment were not retained.

본 연구에서는 침전법을 이용하여 양이온성 계면활성제인 hexadecyltrimethylammonium chloride (CTAC)를 도입한 수산화인회석을 합성하였다. X-선 회절 분석법과 투과전자현미경, 비표면적 분석기를 이용하여 수산화인회석과 CTAC을 도입한 수산화인회석의 결정성, 형태, 비표면적을 분석하였다. 열처리 후, HAP와 CTAC-HAP는 열처리 전과 비교하여 비표면적이 감소하였다. 또한 열처리는 뾰족한 막대 모양에서 종횡비가 감소한 둥근 모양으로의 CTAC-HAP의 형태변화를 유도하였다. 이러한 형태의 변화는 순수한 HAP에서도 관찰되었다. 그러므로 형태 변화와 열처리 후의 비표면적 감소는 열처리 중 CTAC의 제거로 생성된 기공들이 형태 변화로 인해 유지되지 않는 것으로 판단된다.

Keywords

References

  1. B. P. Binks, A. Desforges, and D. G. Duff, Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant, Langmuir, 23, 1098-1106 (2007). https://doi.org/10.1021/la062510y
  2. P. Xiaogang, M. Liberato, Y. Weidong, W. Juanita, S. Erik, K. Andreas, and A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature, 404, 59-61 (2000). https://doi.org/10.1038/35003535
  3. N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater., 13, 1389-1393 (2001). https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
  4. M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature, 204, 1050-1052 (1964). https://doi.org/10.1038/2041050a0
  5. W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, 94-117 (1998). https://doi.org/10.1557/JMR.1998.0015
  6. G. Wei and P. X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25, 4749-4757 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.005
  7. S. Deville, E. Saiz, and A. P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering, Biomaterials, 27, 5480-5489 (2006). https://doi.org/10.1016/j.biomaterials.2006.06.028
  8. W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman, and J. Abram, Hydroxyapatite reinforced polyethylene - A mechanically compatible implant material for bone replacement, Biomaterials, 2, 185-186 (1981). https://doi.org/10.1016/0142-9612(81)90050-8
  9. G. Bernardi, Chromatography of nucleic acids on hydroxyapatite, Nature, 206, 779-783 (1965). https://doi.org/10.1038/206779a0
  10. D. N. Misra, Interaction of citric acid with hydroxyapatite: Surface exchange of ions and precipitation of calcium citrate, J. Dent. Res., 75, 1418-1425 (1996). https://doi.org/10.1177/00220345960750061401
  11. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
  12. K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts, J. Am. Chem. Soc., 124, 11572-11573 (2002). https://doi.org/10.1021/ja020444q
  13. M. I. Dominguez, F. Romero-Sarria, M. A. Centeno, and J. A. Odriozola, Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation, Appl. Catal., B, 87, 245-251 (2009). https://doi.org/10.1016/j.apcatb.2008.09.016
  14. J. W. Jaworski, S. Cho, Y. Kim, J. H. Jung, H. S. Jeon, B. K. Min, and K. Y. Kwon, Hydroxyapatite supported cobalt catalysts for hydrogen generation, J. Colloid Interface Sci., 394, 401-408 (2013). https://doi.org/10.1016/j.jcis.2012.11.036
  15. S. Kim, J. H. Jung, D. H. Kim, D. K. Woo, J. B. Park, M. Y. Choi, and K. Y. Kwon, Preparation of ruthenium incorporated heterogeneous catalysts using hydroxyapatite as catalytic supports for aerobic oxidation of alcohols, Bull. Korean Chem. Soc., 34, 221-224 (2013). https://doi.org/10.5012/bkcs.2013.34.1.221
  16. K. Lin, J. Pan, Y. Chen, R. Cheng, and X. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater., 161, 231-240 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.076
  17. W. Weng and J. L. Baptista, Sol-gel derived porous hydroxyapatite coatings, J. Mater. Sci. Mater. Med., 9, 159-163 (1998). https://doi.org/10.1023/A:1008819703551
  18. V. M. Rusu, C. H. Ng, M. Wilke, B. Tiersch, P. Fratzl, and M. G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials, Biomaterials, 26, 5414-5426 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.051
  19. E. Schroder, T. Jonsson, and L. Poole, Hydroxyapatite chromatography: Altering the phosphate-dependent elution profile of protein as a function of pH, Anal. Biochem., 313, 176-178 (2003). https://doi.org/10.1016/S0003-2697(02)00567-5
  20. S. J. Son, X. Bai, and S. B. Lee, Inorganic hollow nanoparticles and nanotubes in nanomedicine: Part 1. Drug/gene delivery applications, Drug Discov. Today, 12, 650-656 (2007). https://doi.org/10.1016/j.drudis.2007.06.002
  21. V. S. Komlev, S. M. Barinov, and E. V. Koplik, A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release, Biomaterials, 23, 3449-3454 (2002). https://doi.org/10.1016/S0142-9612(02)00049-2
  22. Y. Li, W. Tjandra, and K. C. Tam, Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates, Mater. Res. Bull., 43, 2318-2326 (2008). https://doi.org/10.1016/j.materresbull.2007.08.008
  23. N. F. Mohammad, R. Othman, and F. Yee-Yeoh, Nanoporous hydroxyapatite preparation methods for drug delivery applications, Rev. Adv. Mater. Sci., 38, 138-147 (2014).