DOI QR코드

DOI QR Code

Reaction Characteristics of Cu/CeO2 Catalysts for CO Oxidation

일산화탄소 산화반응을 위한 Cu/CeO2 촉매의 반응특성

  • Kim, Su Bin (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Min Su (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Se Won (Korea Institute of Industrial Technology, Thermochemical Energy System Group) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University)
  • 김수빈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김민수 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김세원 (한국생산기술연구원, 고온에너지시스템 그룹) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2019.08.22
  • Accepted : 2019.09.11
  • Published : 2019.10.10

Abstract

In this study, the effects of the structural properties of the catalyst on CO oxidation reaction by controlling the $Cu/CeO_2$ catalyst amount and calcination temperature were studied, and also the CO conversion rate of the catalyst at the temperature range of $100{\sim}300^{\circ}C$ was evaluated. XRD, Raman, BET, $H_2-TPR$, and XPS analyses were performed to confirm the effect of changes in the structural properties on the chemical properties of the catalyst. The result confirmed that a substitution bond between Cu and Ce was formed and a lot of Cu and Ce bonds were formed when the catalyst carrying 5 wt.%. Of Cu was calcined at $400^{\circ}C$. The Cu-Ce binding was confirmed by peak shifts in Raman analysis and also peaks appeared in $H_2-TPR$. In addition, the balance state analysis demonstrated that a lot of surface labile oxygen molecules are formed, which can be more easily contributed to the reaction with $Ce^{3+}$ species known to form a substitution bond easily. It was found that CO conversion rate of the catalyst used in this study was close to 100% at $150^{\circ}C$.

본 연구에서는 $Cu/CeO_2$ 촉매의 함량과 소성온도를 제어함으로써 촉매의 구조적 특성이 CO 산화반응에 미치는 영향과, $100{\sim}300^{\circ}C$의 온도범위에서 촉매의 CO 전환율을 평가하였다. 촉매의 구조적 특성이 변화함에 따라 촉매의 화학적 특성에 미친 영향을 확인하기 위해 XRD, Raman, BET, $H_2-TPR$, XPS 분석을 수행하였다. 이때, Cu와 Ce의 치환 결합이 형성되는 것을 확인하였고, Cu를 5 wt.% 담지한 촉매를 $400^{\circ}C$로 소성하였을 때 Cu와 Ce의 결합을 많이 이루고 있는 것으로 판단하였다. Cu와 Ce의 결합은 Raman 분석 상에서 peak의 이동과, $H_2-TPR$에서 나타난 peak를 통해 확인하였다. 또한 산화상태 분석을 통하여 치환 결합을 쉽게 이룰 수 있다고 알려져 있는 $Ce^{3+}$종과 반응에 더욱 쉽게 기인할 수 있는 표면 산소종(surface labile oxygen)이 많이 형성되어 있는 것을 확인하였다. 이때, 본 연구에서 사용한 촉매의 CO 전환율은 $150^{\circ}C$에서 100%에 가까운 수치를 나타내는 것을 확인하였다.

Keywords

References

  1. A. Singhania and S. M. Gupta, Low-temperature CO oxidation over Cu/Pt co-doped $ZrO_2$ nanoparticles synthesized by solution combustion, Beilstein J. Nanotechnol., 8, 1546-1552 (2017). https://doi.org/10.3762/bjnano.8.156
  2. S. Li, H. Zhu, Z. Qin, G. Wang, Y. Zhang, Z. Wu, Z. Li, G. Chen, W. Dong, Z. Wu, L. Zheng, J. Zhang, T. Hu, and J. Wang, Morphologic effects of nano $CeO_2$-$TiO_2$ on the performance of Au/$CeO_2$-$TiO_2$ catalysts in low-temperature CO oxidation, Appl. Catal. B, 114, 498-506 (2014).
  3. F. J. Gracia, S. Guerrero, E. E. Wolf, J. T. Miller, and A. J. Kropf, Kinetics, operando FTIR, and controlled atmosphere EXAFS study of the effect of sulfur on Pt-supported catalysts during CO oxidation, J. Catal., 233, 372-387 (2005). https://doi.org/10.1016/j.jcat.2005.04.016
  4. W. Liu, A. F. Sarofim, and M. Flytzani-Stephanopoulos, Complete oxidation of carbon monoxide and methane over metal-promoted fluorite oxide catalysts, Chem. Eng. Sci., 49, 4871-4888 (1994). https://doi.org/10.1016/S0009-2509(05)80066-1
  5. Y. Y. Song, L. Y. Du, W. W. Wang, and C. J. Jia, $CeO_2@SiO_2$ core-shell nanostructures supported CuO as high-temperature tolerant catalysts for CO oxidation, Langmuir, 35, 8658-8666 (2019). https://doi.org/10.1021/acs.langmuir.9b00304
  6. Y. Li, Y. Cai, X. Xing, N. Chen, D. Deng, and Y. Wang, Catalytic activity for CO oxidation of Cu-$CeO_2$ composite nano particles synthesized by a hydrothermal method, Anal. Methods, 7, 3238-3245 (2015). https://doi.org/10.1039/C5AY00261C
  7. S. A. Mock, S. E. Sharp, T. R. Stoner, M. J. Radetic, E. T. Zell, and R. Wang, $CeO_2$ nanorods-supported transition metal catalysts for CO oxidation, J. Colloid Interface Sci., 466, 261-267 (2016). https://doi.org/10.1016/j.jcis.2015.12.026
  8. S. T. Hossain, Y. Almesned, K. Zhang, E. T. Zell, D. T. Bernard, S. Balaz, and R. Wang, Support structure effect on CO oxidation: A comparative study on $SiO_2$ nanospheres and $CeO_2$ nanorods supported CuOx catalysts, Appl. Surf., 428, 598-608 (2018). https://doi.org/10.1016/j.apsusc.2017.09.199
  9. S. Sun, D. Mao, and J. Yu, Enhanced CO oxidation activity of CuO/$CeO_2$ catalyst prepared by surfactant-assisted impregnation method, J. Rare Earths, 33, 1268-1274 (2015). https://doi.org/10.1016/S1002-0721(14)60556-1
  10. S. Dey, G. C. Dhal, D. Mohan, R. Prasad, and R. N. Gupta, Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide, Appl. Surf. Sci., 441, 303-316 (2018). https://doi.org/10.1016/j.apsusc.2018.02.048
  11. Q. Tan, Z. Shi, and D. Wu, $CO_2$ hydrogenation over differently morphological $CeO_2$-supported Cu-Ni catalysts, Int. J. Energy Res., 43, 5392-5404 (2019). https://doi.org/10.1002/er.4636
  12. L. Du, W. Wang, H. Yan, X. Wang, Z. Jin, Q. Song, R. Si, and C. Jia, Copper-ceria sheets catalysts: Effect of copper species on catalytic activity in CO oxidation reaction, J. Rare Earths, 35, 1186-1196 (2017). https://doi.org/10.1016/j.jre.2017.04.005
  13. M. Lykaki, E. Pachatouridou, S. A. C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, and M. Konsolakis, Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/$CeO_2$ catalysts, Appl. Catal. B, 230, 18-28 (2018). https://doi.org/10.1016/j.apcatb.2018.02.035
  14. L. Qin, Y. Q. Cui, T. L. Deng, F. H. Wei, and X. F. Zhang, Highly stable and active Cu1/$CeO_2$ single-Atom Catalyst for CO oxidation: A DFT study, Chem. Phys. Chem., 23, 1002-1011 (2018).
  15. S. T. Hossain, E. Azeeva, K. Zhang, E. T. Zell, D. T. Bernard, S. Balaz, and R. Wang, A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/$CeO_2$ nanorods catalysts, Appl. Surf., 455, 132-143 (2018). https://doi.org/10.1016/j.apsusc.2018.05.101
  16. Z. V. Popovic, Z. Dohcevic-Mitrovic, A. Cros, and A. Cantarero, Raman scattering study of the anharmonic effects in $CeO_2-{\gamma}$, nanocrystals, J. Phys. Condens. Matter, 19, 496209 (2007). https://doi.org/10.1088/0953-8984/19/49/496209
  17. F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, Cerium oxide nanoparticles: Size-selective formation and structure analysis, Appl. Phys. Lett., 80, 127-129 (2002). https://doi.org/10.1063/1.1430502
  18. M. F. Luo, J. M. Ma, J. Q. Lu, Y. P. Song, and Y. J. Wang, High-surface area CuO-$CeO_2$ catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, J. Catal., 246, 52-59 (2007). https://doi.org/10.1016/j.jcat.2006.11.021
  19. J. S. Elias, K. A. Stoerzinger, W. T. Hong, M. Risch, L. Giordano, A. N. Mansour, and Y. Shao-Horn, In situ spectroscopy and mechanistic insights into CO oxidation on transition-metal-substituted ceria nanoparticles, ACS Catal., 7, 6843-6857 (2017). https://doi.org/10.1021/acscatal.7b01600

Cited by

  1. 컴팩트 개질기용 수성가스전이 반응을 위한 Cu-CeO2 촉매에 대한 Nb2O5의 영향 vol.31, pp.1, 2019, https://doi.org/10.7316/khnes.2020.31.1.57
  2. Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구 vol.26, pp.4, 2019, https://doi.org/10.7464/ksct.2020.26.4.286