References
-
A. Singhania and S. M. Gupta, Low-temperature CO oxidation over Cu/Pt co-doped
$ZrO_2$ nanoparticles synthesized by solution combustion, Beilstein J. Nanotechnol., 8, 1546-1552 (2017). https://doi.org/10.3762/bjnano.8.156 -
S. Li, H. Zhu, Z. Qin, G. Wang, Y. Zhang, Z. Wu, Z. Li, G. Chen, W. Dong, Z. Wu, L. Zheng, J. Zhang, T. Hu, and J. Wang, Morphologic effects of nano
$CeO_2$ -$TiO_2$ on the performance of Au/$CeO_2$ -$TiO_2$ catalysts in low-temperature CO oxidation, Appl. Catal. B, 114, 498-506 (2014). - F. J. Gracia, S. Guerrero, E. E. Wolf, J. T. Miller, and A. J. Kropf, Kinetics, operando FTIR, and controlled atmosphere EXAFS study of the effect of sulfur on Pt-supported catalysts during CO oxidation, J. Catal., 233, 372-387 (2005). https://doi.org/10.1016/j.jcat.2005.04.016
- W. Liu, A. F. Sarofim, and M. Flytzani-Stephanopoulos, Complete oxidation of carbon monoxide and methane over metal-promoted fluorite oxide catalysts, Chem. Eng. Sci., 49, 4871-4888 (1994). https://doi.org/10.1016/S0009-2509(05)80066-1
-
Y. Y. Song, L. Y. Du, W. W. Wang, and C. J. Jia,
$CeO_2@SiO_2$ core-shell nanostructures supported CuO as high-temperature tolerant catalysts for CO oxidation, Langmuir, 35, 8658-8666 (2019). https://doi.org/10.1021/acs.langmuir.9b00304 -
Y. Li, Y. Cai, X. Xing, N. Chen, D. Deng, and Y. Wang, Catalytic activity for CO oxidation of Cu-
$CeO_2$ composite nano particles synthesized by a hydrothermal method, Anal. Methods, 7, 3238-3245 (2015). https://doi.org/10.1039/C5AY00261C -
S. A. Mock, S. E. Sharp, T. R. Stoner, M. J. Radetic, E. T. Zell, and R. Wang,
$CeO_2$ nanorods-supported transition metal catalysts for CO oxidation, J. Colloid Interface Sci., 466, 261-267 (2016). https://doi.org/10.1016/j.jcis.2015.12.026 -
S. T. Hossain, Y. Almesned, K. Zhang, E. T. Zell, D. T. Bernard, S. Balaz, and R. Wang, Support structure effect on CO oxidation: A comparative study on
$SiO_2$ nanospheres and$CeO_2$ nanorods supported CuOx catalysts, Appl. Surf., 428, 598-608 (2018). https://doi.org/10.1016/j.apsusc.2017.09.199 -
S. Sun, D. Mao, and J. Yu, Enhanced CO oxidation activity of CuO/
$CeO_2$ catalyst prepared by surfactant-assisted impregnation method, J. Rare Earths, 33, 1268-1274 (2015). https://doi.org/10.1016/S1002-0721(14)60556-1 - S. Dey, G. C. Dhal, D. Mohan, R. Prasad, and R. N. Gupta, Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide, Appl. Surf. Sci., 441, 303-316 (2018). https://doi.org/10.1016/j.apsusc.2018.02.048
-
Q. Tan, Z. Shi, and D. Wu,
$CO_2$ hydrogenation over differently morphological$CeO_2$ -supported Cu-Ni catalysts, Int. J. Energy Res., 43, 5392-5404 (2019). https://doi.org/10.1002/er.4636 - L. Du, W. Wang, H. Yan, X. Wang, Z. Jin, Q. Song, R. Si, and C. Jia, Copper-ceria sheets catalysts: Effect of copper species on catalytic activity in CO oxidation reaction, J. Rare Earths, 35, 1186-1196 (2017). https://doi.org/10.1016/j.jre.2017.04.005
-
M. Lykaki, E. Pachatouridou, S. A. C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, and M. Konsolakis, Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/
$CeO_2$ catalysts, Appl. Catal. B, 230, 18-28 (2018). https://doi.org/10.1016/j.apcatb.2018.02.035 -
L. Qin, Y. Q. Cui, T. L. Deng, F. H. Wei, and X. F. Zhang, Highly stable and active Cu1/
$CeO_2$ single-Atom Catalyst for CO oxidation: A DFT study, Chem. Phys. Chem., 23, 1002-1011 (2018). -
S. T. Hossain, E. Azeeva, K. Zhang, E. T. Zell, D. T. Bernard, S. Balaz, and R. Wang, A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/
$CeO_2$ nanorods catalysts, Appl. Surf., 455, 132-143 (2018). https://doi.org/10.1016/j.apsusc.2018.05.101 -
Z. V. Popovic, Z. Dohcevic-Mitrovic, A. Cros, and A. Cantarero, Raman scattering study of the anharmonic effects in
$CeO_2-{\gamma}$ , nanocrystals, J. Phys. Condens. Matter, 19, 496209 (2007). https://doi.org/10.1088/0953-8984/19/49/496209 - F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, Cerium oxide nanoparticles: Size-selective formation and structure analysis, Appl. Phys. Lett., 80, 127-129 (2002). https://doi.org/10.1063/1.1430502
-
M. F. Luo, J. M. Ma, J. Q. Lu, Y. P. Song, and Y. J. Wang, High-surface area CuO-
$CeO_2$ catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, J. Catal., 246, 52-59 (2007). https://doi.org/10.1016/j.jcat.2006.11.021 - J. S. Elias, K. A. Stoerzinger, W. T. Hong, M. Risch, L. Giordano, A. N. Mansour, and Y. Shao-Horn, In situ spectroscopy and mechanistic insights into CO oxidation on transition-metal-substituted ceria nanoparticles, ACS Catal., 7, 6843-6857 (2017). https://doi.org/10.1021/acscatal.7b01600
Cited by
- 컴팩트 개질기용 수성가스전이 반응을 위한 Cu-CeO2 촉매에 대한 Nb2O5의 영향 vol.31, pp.1, 2019, https://doi.org/10.7316/khnes.2020.31.1.57
- Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구 vol.26, pp.4, 2019, https://doi.org/10.7464/ksct.2020.26.4.286