References
- Akobeng, A. K. (2007). Understanding diagnostic tests 3: receiver operating characteristic curves, Acta Paediatrica, 96, 644-647. https://doi.org/10.1111/j.1651-2227.2006.00178.x
- Bochner, B. H., Kattan, M. W., and Vora, K. C. (2006). Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer, Journal of Clinical Oncology, 24, 3967-3972. https://doi.org/10.1200/JCO.2005.05.3884
- Brennan, M. F., Kattan, M. W., Klimstra, D., and Conlon, K. (2004). Prognostic nomogram for patients undergoing resection for adenocarcinoma of the pancreas, Annals of Surgery, 240, 293. https://doi.org/10.1097/01.sla.0000133125.85489.07
- Committee for Guidelines for Management of Dyslipidemia (2015). 2015 Korean guidelines for management of dyslipidemia, Journal of Lipid and Atherosclerosis, 4, 61-92. https://doi.org/10.12997/jla.2015.4.1.61
- D'Agostino Sr, R. B., Grundy, S., Sullivan, L. M., Wilson, P., and CHD Risk Prediction Group (2001). Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation, Jama, 286, 180-187. https://doi.org/10.1001/jama.286.2.180
- Fukui, M., Tanaka, M., Toda, H., Senmaru, T., Sakabe, K., Ushigome, E., Asano, M., Yamazaki, M., Hasegawa, G., Imai, S., and Nakamura, N. (2011). Risk factors for development of diabetes mellitus, hypertension and dyslipidemia, Diabetes Research and Clinical Practice, 94, e15-e18. https://doi.org/10.1016/j.diabres.2011.07.006
- Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed), Elsevier, Amsterdam.
- Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build and interpret a nomogram for cancer prognosis, Journal of Clinical Oncology, 26, 1364-1370. https://doi.org/10.1200/JCO.2007.12.9791
- Jeon, M. Y., Choi, W. H., and Seo, Y. M. (2017). Risk factors of dyslipidemia and related factors of medication adherence in Korea Adults: KNHANES 2013-2015, Journal of Korean Biological Nursing Science, 19, 131-140. https://doi.org/10.7586/jkbns.2017.19.3.131
- Jun, H. J. (2015). Establishment of a nomogram to predict the prognosis of metastatic or recurrent gastric cancer patients, Yonsei University, Seoul.
- Korea Centers for Disease Control and Prevention (2016-2018). Korea Health Statistics 2016: Korea National Health and Nutrition Examination Survey (KNHANES VII-1), Cheongju. Available from: https://knhanes.cdc.go.kr
- Korean Statistical Information Service (2016). Cause of Death. Available from: http://kosis.kr/
- Lee, S. C. and Chang, M. C. (2014). Development and validation of web-based nomogram to predict postoperative invasive component in ductal carcinoma in situ at core needle breast biopsy, Healthcare Informatics Research, 20, 152-156. https://doi.org/10.4258/hir.2014.20.2.152
- Mozina, M., Demsar, J., Smrke, D., and Zupan, B. (2004). Nomograms for Naive Bayesian Classifiers and How Can They Help in Medical Data Analysis, MEDINFO 2004, 1762.
- Park, J. C. and Lee, J. Y. (2018). How to build nomogram for type 2 diabetes using a naive Bayesian classifier technique, Journal of Applied Statistics, 1-13. https://doi.org/10.1080/02664763.2016.1247786
- Qi, L., Ding, X., Tang, W., Li, Q., Mao, D., and Wang, Y. (2015). Prevalence and risk factors associated with dyslipidemia in Chongqing, China. International Journal of Environmental Research and Public Health, 12, 13455-13465. https://doi.org/10.3390/ijerph121013455
- Seo, J. H. (2019). Nomogram build for predicting the incidence of chronic diseases - dyslipidemia and chronic obstructive pulmonary disease (Master's thesis), Yeungnam University, Gyeongsan.
- Seo, J. H. and Lee, J. Y. (2018). Nomogram construction to predict dyslipidemia based on logistic regression analysis, submitted: Journal of Applied Statistics.
- The Korean Society of Lipid and Atherosclerosis (2018). The Korean Guidelines for Management of Dyslipidemia (4th ed). Available from: http://www.lipid.or.kr/bbs/?code=care
- Van den Berg, E., Kloppenborg, R. P., Kessels, R. P., Kappelle, L. J., and Biessels, G. J. (2009). Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1792, 470-481. https://doi.org/10.1016/j.bbadis.2008.09.004
- World Health Organization. Disease burden and mortality estimates [cited 2018 May 16]. Available from: http://www.who.int/healthinfo/globalburdendisease/estimates/en/index1.html