DOI QR코드

DOI QR Code

Theoretical statistics education using mathematical softwares

이론통계학 교육에서 수학 소프트웨어의 활용

  • Lee, Geung-Hee (Department of Data Science and Statistics, Korea National Open University)
  • 이긍희 (한국방송통신대학교 정보통계학과)
  • Received : 2019.05.17
  • Accepted : 2019.06.13
  • Published : 2019.08.31

Abstract

Theoretical statistics is a calculus based course. However, there are limitations to learn theoretical statistics when students do not know enough calculus techniques. Mathematical softwares (computer algebra systems) that enable calculus manipulations help students understand statistical concepts, by avoiding the difficulties of calculus. In this paper, we introduce mathematical software such as Maxima and Wolfram Alpha. To foster statistical concepts in theoretical statistics education, we present three examples that consist of mathematical derivations using wxMaxima and statistical simulations using R.

이론통계학은 통계학의 원리를 수학을 이용하여 배우는 교과목이다. 학생들이 수학을 충분히 알지 못하는 경우 이론통계학 교육을 통해 통계학의 원리를 이해하는 데에는 제약이 있다. 이론통계학 교육을 통해 통계학의 원리에 대한 이해를 높이기 위해 수학적 문제풀이 외에 R 프로그램을 이용한 통계 시뮬레이션이 보조적으로 도입되어 왔지만 수학을 이용한 문제풀이를 대신하지는 못하고 있다. 이 논문에서는 wxMaxima, Wolfram Alpha 등 기호 수학 연산이 가능한 수학 소프트웨어 CAS를 소개하고, 이를 이용하여 이론통계학 교육에 걸림돌이 되는 수학의 어려움에서 벗어나 통계학의 원리 자체를 학습할 수 있는 방안을 모색하였다.

Keywords

References

  1. Baglivo, J. (1995). Computer Algebra Systems: maple and mathematica, The American Statistician, 49, 235-249.
  2. Berger, R. L. (1998). Using computer algebra systems to teach graduate mathematical statistics: Potential and pitfalls, Statistical Education - Expanding the Network: Proceedings of the Fifth International Conference on Teaching of Statistics (eds. Pereira-Mendoza, L., et al.). International Statistical Institute, Voorburg, Netherlands. Volume 1, 189-195.
  3. Carver R., Everson, M., Gabrosek, et al. (2016). Guidelines for assessment and instruction in statistics education: College report, ASA GAISE College working group.
  4. Doi, J., Potter, G., Wong, J., Alcaraz, I., and Chi, P. (2016). Web Application Teaching Tools for Statistics Using R and Shiny, Technology Innovations in Statistics Education, 9. Available from: https://escholarship.org/uc/item/00d4q8cp
  5. Efron, B. and Hastie, T. (2016). Computer Age Statistical Inference Algorithms, Evidence, and Data Science, Cambridge University Press.
  6. Green, J. L. and Blankenship, E. E. (2015). Fostering conceptual understanding in mathematical statistics, The American Statistician, 69, 315-325. https://doi.org/10.1080/00031305.2015.1069759
  7. Horton, N. J., Brown, E. R., and Qian, L. (2004). Use of R as a toolbox for mathematical statistics exploration, The American Statistician, 58, 343-357. https://doi.org/10.1198/000313004X5572
  8. Hunter, D. R. (2005). Teaching computing in statistical theory courses, The American Statistician, 59, 327-333. https://doi.org/10.1198/000313005X70588
  9. Jang, D. H. (2009). Application of R for inferential statistics in the elementary Statistics Course, Journal of Applied Statistics, 22, 893-910.
  10. Kang, K. and Park, J. (2015). Mathematical Statistics-Practice with R, Freedom Academy, Seoul.
  11. Kim, W. C. (2011). Mathematical Statistics, Yougjisa, Seoul.
  12. Kumar, A. and Kumaresan, S. (2008). Use of Mathematical software for teaching and learning mathematics, Proceedings of 11th International Congress on Mathematics Education, Mexico.
  13. Lee, G. H., Kim, H., Kim, J., Park, J., and Lee, J. (2019). Concepts and Controversies of Statistics, KNOU Press, Seoul.
  14. Lee, S. G. and Park, K. E. (2015). Improving computational thinking abilities Through the teaching of mathematics with Sage, Communications of Mathematical Education, 29, 19-33. https://doi.org/10.7468/jksmee.2015.29.1.19
  15. Leydold, J. and Petry, M. (2011). Introduction to Maxima for Economics, Institute for Statistics and Mathematics, WUWien.
  16. Moore, D. S. (1997). New pedagogy and new content: the case of statistics, International Statistical Review, 65, 123-165. https://doi.org/10.1111/j.1751-5823.1997.tb00390.x
  17. Rose, C. and Smith, M. D. (2000). Symbolic maximum likelihood estimation with Mathematica, Journal of the Royal Statistical Society. Series D (The Statistician), 49, 229-240. https://doi.org/10.1111/1467-9884.00233
  18. Rossman, A. and Chance, B. (1999). Teaching the reasoning of statistical inference: A "Top Ten" List, The College Mathematics Journal, 30, 297-305. https://doi.org/10.2307/2687668