참고문헌
- Bagdonavicius V, Kruopis J, and Nikulin MS (2011). Non-Parametric Tests for Complete Data, John Wiley & Sons, New Jersey.
- Breslow N and Crowley J (1974). A large sample study of the life table and product limit estimates under random censorships, The Annals of Statistics, 2, 437-453. https://doi.org/10.1214/aos/1176342705
- Chen C (1984). A correlation goodness-of-fit test for randomly censored data, Biometrika, 71, 315-322. https://doi.org/10.1093/biomet/71.2.315
- Chen YY, Hollander M, and Langberg NA (1982). Small-sample results for the Kaplan Meier estimator, Journal of the American statistical Association, 77, 141-144. https://doi.org/10.1080/01621459.1982.10477777
- Csorgo S and Horvath L (1981). On the Koziol-Green Model for random censorship, Biometrika, 68, 391-401. https://doi.org/10.1093/biomet/68.2.391
- D'Agostino RB (1986). Test for the normal distribution. In D'Agostino RB and Stephens MA (Eds), Goodness-of-Fit Techniques (Chapter 9), Marcel Dekker, New York.
- Efron B (1967). The two sample problem with censored data. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 4, 831-853.
- Freireich EJ, Gehan EA, Frei E, et al. (1963). The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potential useful therapy, Blood, 21, 699-716. https://doi.org/10.1182/blood.V21.6.699.699
- Kaplan EL and Meier P (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
- Kim N (2011). Testing log normality for randomly censored data, The Korean Journal of Applied Statistics, 24, 883-891. https://doi.org/10.5351/KJAS.2011.24.5.883
- Kim N (2012). Testing exponentiality based on EDF statistics for randomly censored data when the scale parameter is unknown, The Korean Journal of Applied Statistics, 25, 311-319. https://doi.org/10.5351/KJAS.2012.25.2.311
- Kim N (2017). Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters, Communications for Statistical Applications and Methods, 24, 519-531. https://doi.org/10.5351/CSAM.2017.24.5.519
- Kim N (2018). On the maximum likelihood estimation for a normal distribution under random censoring, Communications for Statistical Applications and Methods, 25, 647-658. https://doi.org/10.29220/CSAM.2018.25.6.647
- Kleinbaum DG and Klein M (2005). Survival Analysis: A Self-Learning Test, Springer, New York.
- Koziol JA (1980). Goodness-of-fit tests for randomly censored data, Biometrika, 67, 693-696. https://doi.org/10.1093/biomet/67.3.693
- Koziol JA and Green SB (1976). A Cramer-von Mises statistic for randomly censored data, Biometrika, 63, 465-474. https://doi.org/10.1093/biomet/63.3.465
- Lee ET and Wang JW (2003). Statistical Methods for Survival Data Analysis, John Wiley & Sons, New Jersey.
- Meier P (1975). Estimation of a distribution function from incomplete observations. In J. Gani (Ed), Perspectives in Probability and Statistics, Academic Press, London.
- Michael JR and Schucany WR (1986). Analysis of data from censored samples. In D'Agostino RB and Stephens MA (Eds), Goodness of Fit Techniques (Chapter 11), Marcel Dekker, New York.
- Nair VN (1981). Plots and tests for goodness of fit with randomly censored data, Biometrika, 68, 99-103. https://doi.org/10.1093/biomet/68.1.99
- Stephens MA (1986). Tests based on EDF statistics. In D'Agostino RB and Stephens MA (Eds), Goodness-of-Fit Techniques (Chapter 4), Marcel Dekker, New York.
- Tableman M and Kim JS (2004). Survival Analysis using S: Analysis of Time-to-Event Data, Champman & Hall CRC, Florida.
- Thode HC (2002). Testing for Normality, Marcel Dekker, New York.