References
- Almende BV, Thieurmel B, and Robert T (2018). visNetwork: Network Visualization using vis.js Library, R package version 2.0.4, https://CRAN.R-project.org/package=visNetwork
- Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B (Methodological), 57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
- Bochkis IM, Schug J, Diana ZY, Kurinna S, Stratton SA, Barton MC, and Kaestner KH (2012). Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2, PLoS Genetics, 8, e1002770. https://doi.org/10.1371/journal.pgen.1002770
- Brown KA, Pietenpol JA, and Moses HL (2007). A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling, Journal of Cellular Biochemistry, 101, 9-33. https://doi.org/10.1002/jcb.21255
- Cai T, Cai TT, and Zhang A (2016). Structured matrix completion with applications to genomic data integration, Journal of the American Statistical Association, 111, 621-633. https://doi.org/10.1080/01621459.2015.1021005
- Candes EJ and Tao T (2010). The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory, 56, 2053-2080. https://doi.org/10.1109/TIT.2010.2044061
- Chang W, Cheng J, Allaire JJ, Xie Y, and McPherson J (2018). shiny: Web Application Framework for R, R package version 1.2.0, https://CRAN.R-project.org/package=shiny
- Cheang MCU, Chia SK, Voduc D, et al. (2009). Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer, JNCI: Journal of the National Cancer Institute, 101, 736-750. https://doi.org/10.1093/jnci/djp082
- Chudasama P, Mughal SS, Sanders MA, et al. (2018). Integrative genomic and transcriptomic analysis of leiomyosarcoma, Nature Communications, 9, 144. https://doi.org/10.1038/s41467-017-02602-0
- Csardi G and Nepusz T (2006). The igraph software package for complex network research, Inter-Journal, Complex Systems, 1695.
- Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, and Shi B (2015). Breast cancer intrinsic subtype classification, clinical use and future trends, American Journal of Cancer Research, 5, 2929.
- Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, and Lothe RA (2015). Portrait of the PI3K/AKT pathway in colorectal cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1855, 104-121. https://doi.org/10.1016/j.bbcan.2014.09.008
- Driver KE, Song H, Lesueur F, et al. (2008). Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population, Carcinogenesis, 29, 333-341. https://doi.org/10.1093/carcin/bgm284
- Franzin A, Sambo F, and di Camillo B (2017). bnstruct: an R package for Bayesian Network structure learning in the presence of missing data, Bioinformatics, 33, 1250-1252.
- Fryett JJ, Inshaw J, Morris AP, and Cordell HJ (2018). Comparison of methods for transcriptome imputation through application to two common complex diseases, European Journal of Human Genetics, 26, 1658-1667. https://doi.org/10.1038/s41431-018-0176-5
- Gamazon ER, Wheeler HE, Shah KP, et al. (2015). A gene-based association method for mapping traits using reference transcriptome data, Nature Genetics, 47, 1091. https://doi.org/10.1038/ng.3367
- Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, and Staudt LM (2016). Toward a shared vision for cancer genomic data, New England Journal of Medicine, 375, 1109-1112. https://doi.org/10.1056/NEJMp1607591
- Gusev A, Ko A, Shi H, et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies, Nature Genetics, 48, 245. https://doi.org/10.1038/ng.3506
- Howie BN, Donnelly P, and Marchini J (2009). PLoS Genetics, A flexible and accurate genotype imputation method for the next generation of genome-wide association studies, 5, e1000529. https://doi.org/10.1371/journal.pgen.1000529
- Hsu YHH, Churchhouse C, Pers TH, et al. (2019). PAIRUP-MS: Pathway analysis and imputation to relate unknowns in profiles from mass spectrometry-based metabolite data, PLoS Computational Biology, 15, e1006734. https://doi.org/10.1371/journal.pcbi.1006734
- Johnson J, Thijssen B, McDermott U, Garnett M,Wessels LFA, and Bernards R (2016). Targeting the RB-E2F pathway in breast cancer, Oncogene, 35, 4829. https://doi.org/10.1038/onc.2016.32
- Kaenel P, Mosimann M, and Andres AC (2012). The multifaceted roles of Eph/ephrin signaling in breast cancer, Cell Adhesion & Migration, 6, 138-147. https://doi.org/10.4161/cam.20154
- Koksal AS, Beck K, Cronin DR, et al. (2018). Synthesizing signaling pathways from temporal phosphoproteomic data, Cell Reports, 24, 3607-3618. https://doi.org/10.1016/j.celrep.2018.08.085
- Krause RW, Huisman M, and Snijders TA (2018). Multiple imputation for longitudinal network data, Italian Journal of Applied Statistics, 30, 33-58.
- Kramer N, Schafer J, and Boulesteix AL (2009). Regularized estimation of large-scale gene association networks using graphical Gaussian models, BMC Bioinformatics, 10, 384. https://doi.org/10.1186/1471-2105-10-384
- Liu F (2011). Inhibition of Smad3 activity by cyclin D-CDK4 and cyclin E-CDK2 in breast cancer cells, Cell Cycle, 10, 190-191.
- Ma J, Lyu H, Huang J, and Liu B (2014). Targeting of erbB3 receptor to overcome resistance in cancer treatment, Molecular Cancer, 13, 105. https://doi.org/10.1186/1476-4598-13-105
- Mazumder R, Hastie T, and Tibshirani R (2010). Spectral regularization algorithms for learning large incomplete matrices, Journal of Machine Learning Research, 11, 2287-2322.
- Nevins JR (2001). The Rb/E2F pathway and cancer, Human Molecular Genetics, 10, 699-703. https://doi.org/10.1093/hmg/10.7.699
- Pasquale EB (2010). Eph receptors and ephrins in cancer: bidirectional signalling and beyond, Nature Reviews Cancer, 10, 165. https://doi.org/10.1038/nrc2806
- Sales G, Calura E, and Romualdi C (2018). graphite: GRAPH Interaction from pathway Topological Environment, R package version 1.26.1.
- Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, and Buetow KH (2008). PID: the pathway interaction database, Nucleic Acids Research, 37, D674-D679. https://doi.org/10.1093/nar/gkn653
- Schulz H, Ruppert AK, Herms S, et al. (2017). Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus, Nature Communications, 8, 1511. https://doi.org/10.1038/s41467-017-01818-4
- Shen R, Olshen AB, and Ladanyi M (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis, Bioinformatics, 25, 2906-2912. https://doi.org/10.1093/bioinformatics/btp543
- Shojaie A and Michailidis G (2009). Analysis of gene sets based on the underlying regulatory network, Journal of Computational Biology, 16, 407-426. https://doi.org/10.1089/cmb.2008.0081
- Shojaie A and Michailidis G (2010). Network enrichment analysis in complex experiments, Statistical Applications in Genetics and Molecular Biology, 9, 22. https://doi.org/10.2202/1544-6115.1483
- Sommer S and Fuqua SA (2001). Estrogen receptor and breast cancer, Seminars in Cancer Biology, 11, 339-352. https://doi.org/10.1006/scbi.2001.0389
- Subramanian A, Tamayo P, Mootha VK, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In Proceedings of the National Academy of Sciences, 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
- Tang YN, Ding WQ, Guo XJ, Yuan XW, Wang DM, and Song JG (2015). Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis, Nature Communications, 6, 8230. https://doi.org/10.1038/ncomms9230
- Tarasewicz E, Rivas L, Hamdan R, et al. (2014). Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells, Cell Cycle, 13, 3191-3201. https://doi.org/10.4161/15384101.2014.950126
- Thomas AL, Lind H, Hong A, et al. (2017). Inhibition of CDK-mediated Smad3 phosphorylation reduces the Pin1-Smad3 interaction and aggressiveness of triple negative breast cancer cells, Cell Cycle, 16, 1453-1464. https://doi.org/10.1080/15384101.2017.1338988
- Tomczak K, Czerwinska P, and Wiznerowicz M (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge, Contemporary Oncology, 19, A68.
- Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, and Altman RB (2001). Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525. https://doi.org/10.1093/bioinformatics/17.6.520
- Tsuchiya T, Fujii M, Matsuda N, Kunida K, Uda S, Kubota H, Konishi K, and Kuroda S (2017). System identification of signaling dependent gene expression with different time-scale data, PLoS Computational Biology, 13, e1005913. https://doi.org/10.1371/journal.pcbi.1005913
- Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, and Cox J (2016). The Perseus computational platform for comprehensive analysis of (prote) omics data, Nature Methods, 13, 731. https://doi.org/10.1038/nmeth.3901
- Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, and Stuart JM (2010). Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM, Bioinformatics, 26, i237-i245. https://doi.org/10.1093/bioinformatics/btq182
- Wei L, Jin Z, Yang S, Xu Y, Zhu Y, and Ji Y (2017). TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data, Bioinformatics, 34, 1615-1617.
- Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, and Smyth GK (2010). ROAST: rotation gene set tests for complex microarray experiments, Bioinformatics, 26, 2176-2182. https://doi.org/10.1093/bioinformatics/btq401
- Zelivianski S, Cooley A, Kall R, and Jeruss JS (2010). Cyclin-dependent kinase 4-mediated phosphorylation inhibits Smad3 activity in cyclin D-overexpressing breast cancer Cells, Molecular Cancer Research, 8, 1375-1387. https://doi.org/10.1158/1541-7786.MCR-09-0537
- Zhang Y, Linder MH, Shojaie A, Ouyang Z, Shen R, Baggerly KA, Baladandayuthapani V, and Zhao H (2017a). Dissecting pathway disturbances using network topology and multi-platform genomics data, Statistics in Biosciences, 10, 1-21.
- Zhang Y, Ouyang Z, and Zhao H (2017b). A statistical framework for data integration through graphical models with application to cancer genomics, The Annals of Applied Statistics, 11, 161-184. https://doi.org/10.1214/16-AOAS998
- Zhao Y, Hoang TH, Joshi P, Hong SH, Giardina C, and Shin DG (2017). A route-based pathway analysis framework integrating mutation information and gene expression data, Methods, 124, 3-12. https://doi.org/10.1016/j.ymeth.2017.06.016
- Zhou X, Carbonetto P, and Stephens M (2013). Polygenic modeling with Bayesian sparse linear mixed models, PLoS Genetics, 9, e1003264. https://doi.org/10.1371/journal.pgen.1003264
- Zhu Y, Qiu P, and Ji Y (2014). TCGA-assembler: open-source software for retrieving and processing TCGA data, Nature Methods, 11, 599. https://doi.org/10.1038/nmeth.2956