References
- Aarset MV (1987). How to identify a bathtub hazard rate, IEEE Transactions on Reliability, 36, 106-108. https://doi.org/10.1109/TR.1987.5222310
- Aryal GR and Tsokos CP (2009). On the transmuted extreme value distribution with application, Nonlinear Analysis: Theory, Methods & Applications, 71, e1401-e1407. https://doi.org/10.1016/j.na.2009.01.168
- Balakrishnan N and Cohen AC (2014). Order Statistics and Inference: Estimation Methods, Elsevier.
- Box GEP and Tiao GC (1973). Bayesian Inference in Statistical Analysis, Addison-Wesley, Massachusetts.
- Carpenter J and Bithell J (2000). Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians, Statistics in Medicine, 19, 1141-1164. https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
- Chen MH and Shao QM (1999). Monte Carlo estimation of Bayesian credible and HPD intervals, Journal of Computational and Graphical Statistics, 8, 69-92. https://doi.org/10.2307/1390921
- Chen Z (2000). A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statistics & Probability Letters, 49, 155-161. https://doi.org/10.1016/S0167-7152(00)00044-4
- Chib S and Greenberg E (1995). Understanding the metropolis-hastings algorithm, The American Statistician, 49, 327-335. https://doi.org/10.2307/2684568
- Choulakian V and Stephens MA (2001). Goodness-of-fit tests for the generalized Pareto distribution, Technometrics, 43, 478-484. https://doi.org/10.1198/00401700152672573
- Cohen AC (1965). Maximum likelihood estimation in theWeibull distribution based on complete and on censored samples, Technometrics, 7, 579-588. https://doi.org/10.1080/00401706.1965.10490300
- Cordeiro GM, Ortega EMM, da Cunha DCC (2013). The exponentiated generalized class of distributions, Journal of Data Science, 11, 1-27. https://doi.org/10.6339/JDS.201301_11(1).0001
- Davison AC and Hinkley DV (1997). Bootstrap Methods and Their Application, Cambridge university press, Cambridge.
-
Dey S, Nassar M, and Kumar D (2017).
${\alpha}$ logarithmic transformed family of distributions with application, Annals of Data Science, 4, 457-482. https://doi.org/10.1007/s40745-017-0115-2 - Dey S, Nassar M, Kumar D, and Alaboud F (2019). Alpha logarithmic transformed Frechet distribution: properties and estimation, Austrian Journal of Statistics, 48, 70-93. https://doi.org/10.17713/ajs.v48i1.634
- Edwards W, Lindman H, and Savage LJ (1963). Bayesian statistical inference for psychological research., Psychological Review, 70, 193. https://doi.org/10.1037/h0044139
- Efron B (1979). Bootstrap methods: another look at the jackknife, The Annals of Statistics, 7, 1-26. https://doi.org/10.1214/aos/1176344552
- Efron B (1982). The Jackknife, the Bootstrap, and other Resampling Plans, 38, Siam.
- Efron B and Tibshirani RJ (1994). An Introduction to the Bootstrap, CRC press, Florida.
- Evans IG and Ragab AS (1983). Bayesian inferences given a type-2 censored sample from a Burr distribution, Communications in Statistics-Theory and Methods, 12, 1569-1580. https://doi.org/10.1080/03610928308828551
- Gelfand AE and Smith AFM (1990). Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Geman S and Geman D (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741. https://doi.org/10.1109/TPAMI.1984.4767596
- Glaser RE (1980). Bathtub and related failure rate characterizations, Journal of the American Statistical Association, 75, 667-672. https://doi.org/10.1080/01621459.1980.10477530
- Graham RL, Knuth DE, and Patashnik O (1994). Concrete Mathematics: A Foundation for Computer Science (2nd ed), Addison-Wesley, Mass.
- Gupta RC, Gupta PL, and Gupta RD (1998). Modeling failure time data by Lehman alternatives, Communications in Statistics-Theory and Methods, 27, 887-904. https://doi.org/10.1080/03610929808832134
- Gupta RD and Kundu D (2001). Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical Journal: Journal of Mathematical Methods in Biosciences, 43, 117-130. https://doi.org/10.1002/1521-4036(200102)43:1@@<@@117::aid-bimj117@@>@@3.0.co;2-r
- Hastings WK (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
- Hjorth U (1980). A reliability distribution with increasing, decreasing, constant and Bathtub-Shaped failure rates, Technometrics, 22, 99-107. https://doi.org/10.2307/1268388
- Kumaraswamy P (1980). A generalized probability density function for double-bounded random processes, Journal of Hydrology, 46, 79-88. https://doi.org/10.1016/0022-1694(80)90036-0
- Kundu D and Howlader H (2010). Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data, Computational Statistics & Data Analysis, 54, 1547-1558. https://doi.org/10.1016/j.csda.2010.01.003
- Lawless JF (2011). Statistical Models and Methods for Lifetime Data, JohnWiley & Sons, New York.
- Leiva V, Athayde E, Azevedo C, and Marchant C (2011). Modeling wind energy flux by a Birnbaum-Saunders distribution with an unknown shift parameter. Journal of Applied Statistics, 38, 2819-2838. https://doi.org/10.1080/02664763.2011.570319
- Lindley DV (1958). Fiducial distributions and Bayes' theorem, Journal of the Royal Statistical Society. Series B (Methodological), 20, 102-107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x
- Maurya SK, Kaushik A, Singh RK, Singh SK, and Singh U (2016). A new method of proposing distribution and its application to real data, Imperial Journal of Interdisciplinary Research, 2, 1331-1338.
- Maurya SK, Kaushik A, Singh SK, and Singh U (2017). A new class of distribution having decreasing, increasing and bathtub-shaped failure rate, Communications in Statistics-Theory and Methods, 46, 10359-10372. https://doi.org/10.1080/03610926.2016.1235196
- Maurya SK, Kumar D, Singh SK, and Singh U (2018). One parameter decreasing failure rate distribution, International Journal of Statistics & Economics, 19, 120-138.
- Merovci F, Elbatal I, and Ahmed A (2013). Transmuted Generalized Inverse Weibull Distribution, arXiv preprint arXiv:1309.3268.
- Merovci F and Puka L (2014). Transmuted Pareto distribution, ProbStat Forum, 7, 1-11.
- Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, and Teller E (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21, 1087-1092. https://doi.org/10.1063/1.1699114
- Metropolis N and Ulam S (1949). The Monte Carlo method, Journal of the American Statistical Association, 44, 335-341. https://doi.org/10.1080/01621459.1949.10483310
- Mudholkar GS and Srivastava DK (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability, 42, 299-302. https://doi.org/10.1109/24.229504
- Murthy DNP, Xie M, and Jiang R (2004). Weibull Models, John Wiley & Sons, Hoboken.
- Nadarajah S, Bakouch HS, and Tahmasbi R (2011). A generalized Lindley distribution, Sankhya B, 73, 331-359. https://doi.org/10.1007/s13571-011-0025-9
- Nadarajah S and Kotz S (2006). The exponentiated type distributions, Acta Applicandae Mathematica, 92, 97-111. https://doi.org/10.1007/s10440-006-9055-0
- Nassar M, Afify AZ, Dey S, and Kumar D (2018). A new estension ofWeibull distribution: Properties and different methods of estimation, Journal of Computational and Applied Mathematics, 335, 1-18. https://doi.org/10.1016/j.cam.2017.11.023
- Nelson WB (2003). Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and other Applications (Volume 10), SIAM, London.
- Pappas V, Adamidis K, and Loukas S (2012). A family of lifetime distributions, International Journal of Quality, Statistics, and Reliability, 2012, 1-6.
- Peter H (1988). Theoretical comparision of Bootstrap confidence intervals, The Annals of Statistics, 16, 927-953. https://doi.org/10.1214/aos/1176350933
- Robert C and Casella G (2013). Monte Carlo Statistical Methods, Springer Science & Business Media.
- Shannon CE (1951). Prediction and entropy of printed English, Bell System Technical Journal, 30, 50-64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
- Shaw WT and Buckley IRC (2007). The Alchemy of Probability Distribution: Beyond Gram-Charlier Cornish-Fisher Expansions, and Skew-Normal and Kurtotic-Normal Distribution (Research report).
- Sinha SK (1987). Bayesian estimation of the parameters and reliability function of a mixture of Weibull life distributions, Journal of Statistical Planning and Inference, 16, 377-387. https://doi.org/10.1016/0378-3758(87)90090-5
- Singh SK, Singh U, and Kumar M (2013). Estimation of Parameters of Exponentiated Pareto Model for Progressive Type-II Censored Data with Binomial Removals Using Markov Chain Monte Carlo Method, International Journal of Mathematics & Computation, 21, 88-102.
- Singh SK, Singh U, and Kumar M (2016). Bayesian estimation for Poisson-exponential model under progressive type-ii censoring data with binomial removal and its application to ovarian cancer data, Communications in Statistics-Simulation and Computation, 45, 3457-3475. https://doi.org/10.1080/03610918.2014.948189
- Singh U, Gupta PK, and Upadhyay SK (2005). Estimation of parameters for exponentiated-Weibull family under type-II censoring scheme, Computational Statistics & Data Analysis, 48, 509-523. https://doi.org/10.1016/j.csda.2004.02.009
- Smith AFM and Roberts GO (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods, Journal of the Royal Statistical Society. Series B (Methodological), 55, 3-23. https://doi.org/10.1111/j.2517-6161.1993.tb01466.x
- Tierney L (1994). Markov chains for exploring posterior distributions, The Annals of Statistics, 22, 1701-1728. https://doi.org/10.1214/aos/1176325750
- Varian HR (1975). A Bayesian approach to real estate assessment, Studies in Bayesian Econometric and Statistics in honor of Leonard J. Savage, 195-208, North Holland.