참고문헌
- Amemiya T (1984). Tobit models: a survey, Journal of Econometrics, 24, 3-61. https://doi.org/10.1016/0304-4076(84)90074-5
- Arellano M and Bond S (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations, The Review of Economic Studies, 58, 227-297.
- Arismendi JC (2013). Multivariate truncated moments, Journal of Multivariate Analysis, 117, 41-75. https://doi.org/10.1016/j.jmva.2013.01.007
- Croissant Y and Millo G (2008). Panel data econometrics in R: The plm package, Journal of Statistical Software, 27, 1-43.
- Drum ML and McCullagh P (1993). REML estimation with exact covariance in the logistic mixed model, Biometrics, 49, 677-689. https://doi.org/10.2307/2532189
- Duan JC and Fulop A (2011). A stable estimator of the information matrix under EM for dependent data, Statistics and Computing, 21, 83-91. https://doi.org/10.1007/s11222-009-9149-4
- Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Bates D, and Chambers J (2018). Seamless R and C++ Integration. Available from: http://www.rcpp.org, http://dirk.eddelbuettel.com/code/rcpp.html
- Eddelbuettel D and Sanderson C (2014). RcppArmadillo: accelerating R with high-performance C++ linear algebra, Computational Statistics and Data Analysis, 71, 1054-1063. https://doi.org/10.1016/j.csda.2013.02.005
- Efron B and Hinkley DV (1978). The observed versus expected information, Biometrika, 65, 457-487. https://doi.org/10.1093/biomet/65.3.457
- Green W (2004). Fixed effects and bias due to the incidental parameters problem in the Tobit model, Econometric Review, 23, 125-147. https://doi.org/10.1081/ETC-120039606
- Henningsen A (2017). censReg: Censored Regression (Tobit) Models. R package version 0.5. Avail-able from: http://CRAN.R-Project.org/package=censReg
- Hughes JP (1999). Mixed effects models with censored data with application to HIV RNA levels, Biometrics, 55, 625-629. https://doi.org/10.1111/j.0006-341X.1999.00625.x
- Kan R and Robotti C (2017). On moments of folded and truncated multivariate normal distributions, Unpublished manuscript. Available from: https://sites.google.com/site/cesarerobotti/krJCGS.pdf
- Kleiber C and Zeileis A (2009). AER: Applied Econometrics with R, R package version 1.1. Available from: http://CRAN.R-project.org/package=AER
- Lancaster T (2000). The incidental parameter problem since 1948, Journal of Econometrics, 95, 391-413. https://doi.org/10.1016/S0304-4076(99)00044-5
- Lee L (2017) Nondetects And Data Analysis for environmental data. Available from: http://cran.r-project.org/ pack-age=NADA
- Lee SC (2016). A Bayesian inference for fixed effects panel probit model, Communications for sta-tistical Applications and Methods, 23, 179-187. https://doi.org/10.5351/CSAM.2016.23.2.179
- Lesaffre E and Spiessens B (2001). On the effect of the number of quadrature points in a logistic random effects model: an example, Journal of Royal Statistical Society, Applied Statistics, Series C, 50, 325-335. https://doi.org/10.1111/1467-9876.00237
- Lee Y and Nelder JA (2001). Hierarchical generalized linear models: a synthesis of generalized linear models, random-effect model and structure dispersion, Biometrika, 88, 987-1006. https://doi.org/10.1093/biomet/88.4.987
- Louis TA (1982). Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society, Series B, 62, 257-270.
- Maddala GS (1983). Limited-Dependent and Qualitative Variables in Econometrics, Cambridge University Press, New York.
- Meilijson I (1989). A fast improvement to the EM algorithm on its own terms, Journal of the Royal Statistical Society, Series B, 51, 127-138.
- Meng XL and Rubin DB (1991). Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm, Journal of the American Statistical Association, 86, 899-909. https://doi.org/10.1080/01621459.1991.10475130
- McCulloch CE (1994). Maximum likelihood variance components estimation for binary data, Journal of the American Statistical Association, 89, 330-335. https://doi.org/10.1080/01621459.1994.10476474
- McCulloch CE (1996). Fixed and random effects and best prediction. In Proceedings of the Kansas State Conference on Applied Statistics in Agriculture.
- Noh M and Lee Y (2007). REML estimation for binary data in GLMMs, Journal of Multivariate Analysis, 98, 896-915. https://doi.org/10.1016/j.jmva.2006.11.009
- Patterson H and Thomson R (1971). Recovery of inter-block information when block sizes are unequal, Biometrika, 31, 100-109.
- R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/
- SAS (2011). SAS/ETS 9.3 User's Guide.
- Searle SR, Casella G, and McCulloch CE (2006). Variance Components, John Wiley & Sons, New York.
- Stata (2017). Finite Mixture Models Reference Manual, Stata press.
- Tobin J (1958). Estimation of relationships for limited dependent variables, Econometrica, 26, 24-36. https://doi.org/10.2307/1907382
- Zhang H, Lu N, Feng C, Thurston SW, Xia Y, Zhu L, and Tu XM (2011). On fitting generalized linear mixed-effects models for binary responses using different statistical packages, Statistics in Medicine, 30, 2562-2572. https://doi.org/10.1002/sim.4265