References
- Seifert AC, Wehrli FW. Solid-state quantitative (1)H and (31)P MRI of cortical bone in humans. Curr Osteoporos Rep 2016;14:77-86 https://doi.org/10.1007/s11914-016-0307-2
- Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int 2015;97:292-307 https://doi.org/10.1007/s00223-015-9977-5
- Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 2008;42:193-199 https://doi.org/10.1016/j.bone.2007.09.049
- Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015;41:870-883 https://doi.org/10.1002/jmri.24713
- Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed 2013;26:489-506 https://doi.org/10.1002/nbm.2906
- Lee H, Zhao X, Song HK, Zhang R, Bartlett SP, Wehrli FW. Rapid dual-RF, dual-echo, 3D ultrashort echo time craniofacial imaging: a feasibility study. Magn Reson Med 2019;81:3007-3016 https://doi.org/10.1002/mrm.27625
- Lu X, Jerban S, Wan L, et al. Three-dimensional ultrashort echo time imaging with tricomponent analysis for human cortical bone. Magn Reson Med 2019;82:348-355 https://doi.org/10.1002/mrm.27718
- Wan L, Zhao W, Ma Y, et al. Fast quantitative 3D ultrashort echo time MRI of cortical bone using extended cones sampling. Magn Reson Med 2019;82:225-236 https://doi.org/10.1002/mrm.27715
- Jerban S, Ma Y, Wan L, et al. Collagen proton fraction from ultrashort echo time magnetization transfer (UTEMT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (muCT). NMR Biomed 2019;32:e4045
- Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology 2015;276:526-535 https://doi.org/10.1148/radiol.15141850
- Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017;181:1-14 https://doi.org/10.1016/j.trsl.2016.09.006
- Diaz E, Chung CB, Bae WC, et al. Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water. NMR Biomed 2012;25:161-168 https://doi.org/10.1002/nbm.1728
- Wu Y, Dong Y, Jiang J, Li H, Zhu T, Chen S. Evaluation of the bone-ligament and tendon insertions based on Raman spectrum and its PCA and CLS analysis. Sci Rep 2017;7:38706 https://doi.org/10.1038/srep38706
- Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 2012;27:848-857 https://doi.org/10.1002/jbmr.1535
- Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res 2015;30:1290-1300 https://doi.org/10.1002/jbmr.2452
- Li C, Seifert AC, Rad HS, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 2014;272:796-806 https://doi.org/10.1148/radiol.14132585
- Johnson EM, Vyas U, Ghanouni P, Pauly KB, Pauly JM. Improved cortical bone specificity in UTE MR imaging. Magn Reson Med 2017;77:684-695 https://doi.org/10.1002/mrm.26160
- Chen J, Chang EY, Carl M, et al. Measurement of bound and pore water T1 relaxation times in cortical bone using three-dimensional ultrashort echo time cones sequences. Magn Reson Med 2017;77:2136-2145 https://doi.org/10.1002/mrm.26292
- Ma YJ, Lu X, Carl M, et al. Accurate T1 mapping of short T2 tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-Cones AFI-VTR) method. Magn Reson Med 2018;80:598-608 https://doi.org/10.1002/mrm.27066
- Du J, Diaz E, Carl M, Bae W, Chung CB, Bydder GM. Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med 2012;67:645-649 https://doi.org/10.1002/mrm.23047
- Chang EY, Bae WC, Shao H, et al. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone. NMR Biomed 2015;28:873-880 https://doi.org/10.1002/nbm.3316
- Ma YJ, Tadros A, Du J, Chang EY. Quantitative twodimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 2018;79:1941-1949 https://doi.org/10.1002/mrm.26846
- Ma YJ, Shao H, Du J, Chang EY. Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed 2016;29:1546-1552 https://doi.org/10.1002/nbm.3609
- Jerban S, Ma Y, Nazaran A, et al. Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): an ex vivo study. NMR Biomed 2018;31:e3994 https://doi.org/10.1002/nbm.3994
- Ozhinsky E, Han M, Bucknor M, Krug R, Rieke V. T2-based temperature monitoring in bone marrow for MR-guided focused ultrasound. J Ther Ultrasound 2016;4:26 https://doi.org/10.1186/s40349-016-0073-8
- Han M, Scott SJ, Ozhinsky E, et al. Assessing temperature changes in cortical bone using variable flip-angle ultrashort echo-time MRI. AIP Conference Proceedings 2017;1821, 060001
- Ramsay E, Mougenot C, Kazem M, Laetsch TW, Chopra R. Temperature-dependent MR signals in cortical bone: potential for monitoring temperature changes during highintensity focused ultrasound treatment in bone. Magn Reson Med 2015;74:1095-1102 https://doi.org/10.1002/mrm.25492
- Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008;27:376-390 https://doi.org/10.1002/jmri.21265
- Han M, Rieke V, Scott SJ, et al. Quantifying temperaturedependent T1 changes in cortical bone using ultrashort echo-time MRI. Magn Reson Med 2015;74:1548-1555 https://doi.org/10.1002/mrm.25994
- Ma YJ, Chang EY, Carl M, Du J. Quantitative magnetization transfer ultrashort echo time imaging using a timeefficient 3D multispoke Cones sequence. Magn Reson Med 2018;79:692-700 https://doi.org/10.1002/mrm.26716
- Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med 2006;55:575-582 https://doi.org/10.1002/mrm.20796
- Carl M, Bydder GM, Du J. UTE imaging with simultaneous water and fat signal suppression using a time-efficient multispoke inversion recovery pulse sequence. Magn Reson Med 2016;76:577-582 https://doi.org/10.1002/mrm.25823
- Ma YJ, Zhu Y, Lu X, Carl M, Chang EY, Du J. Short T2 imaging using a 3D double adiabatic inversion recovery prepared ultrashort echo time cones (3D DIR-UTE-Cones) sequence. Magn Reson Med 2018;79:2555-2563 https://doi.org/10.1002/mrm.26908
- Biswas R, Bae W, Diaz E, et al. Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 2012;50:749-755 https://doi.org/10.1016/j.bone.2011.11.029
Cited by
- Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model vol.33, pp.3, 2019, https://doi.org/10.1002/nbm.4233
- Ultrashort echo time adiabatic T1ρ (UTE-Adiab-T1ρ) is sensitive to human cadaveric knee joint deformation induced by mechanical loading and unloading vol.80, 2019, https://doi.org/10.1016/j.mri.2021.04.014
- Detecting Articular Cartilage and Meniscus Deformation Effects Using Magnetization Transfer Ultrashort Echo Time (MT-UTE) Modeling during Mechanical Load Application: Ex Vivo Feasibility Study vol.13, pp.1, 2021, https://doi.org/10.1177/1947603520976771