DOI QR코드

DOI QR Code

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P. (Department of Mechanical Engineering, SRES's Sanjivani College of Engineering, Savitribai Phule Pune University) ;
  • Thakur, Ajaykumar G. (Department of Mechanical Engineering, SRES's Sanjivani College of Engineering, Savitribai Phule Pune University)
  • Received : 2019.01.08
  • Accepted : 2019.05.30
  • Published : 2019.09.25

Abstract

The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

Keywords

References

  1. Carrera, E. (1999b), "Transverse normal stress effects in multilayered plates", J. Appl. Mech., 66(4), 1004-1012. https://doi.org/10.1115/1.2791769.
  2. Carrera, E. (2002), "Theories and finite elements for multilayered anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649.
  3. Carrera, E. (2003), "Theories and finite elements for multilayered anisotropic, composite plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 216-296. https://doi.org/10.1007/BF02736649.
  4. Carrera, E. (2005), "Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates", AIAA J., 43(10), 2232-2242. https://doi.org/10.2514/1.11230.
  5. Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons Inc., New York, U.S.A.
  6. Goswami, S., Becker, W. (2013), "A new rectangular finite element formulation based on higher order displacement theory for thick and thin composite and sandwich plates", World J. Mech., 3(3),194-201. https://doi.org/10.4236/wjm.2013.33019.
  7. Grover N, Singh B. and Maiti, D. (2013), "New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates", AIAA J., 51(8),1861-1871. https://doi.org/10.2514/1.J052399.
  8. Hari, M., Singh, B. and Pandit, M. (2011), "Nonlinear static analysis of smart laminated composite plate", Aerosp. Sci. Technol., 15(3), 224-235. https://doi.org/10.1016/j.ast.2011.01.003.
  9. Kant, T. and Kommineni, J.(1992), "$C^0$ finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520. https://doi.org/10.1016/0045-7949(92)90436-4.
  10. Kant, T. and Mallikarjuna. (1990), "Non-linear dynamics of laminated plates with a higher-order theory and $C^0$ finite elements", Int. J. Non-Lin. Mech., 26(3-4), 335-343. https://doi.org/10.1016/0020-7462(91)90063-Y.
  11. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X.
  12. Kirchhoff, G. (1850), "About the balance and movement of an elastic disc", J. Pure Appl. Math., 40, 51-88.
  13. Kulkarni, P., Dhoble, A. and Padole, P. (2018). "A review of research and recent trends in analysis of composite plates", Sadhana, 43(6), 96. https://doi.org/10.1007/s12046-018-0867-1.
  14. Li, Z.M. and Zhao, Y.X. (2015), "Nonlinear bending of shear deformable anisotropic laminated beams resting on two-parameter elastic foundations based on an exact bending curvature model", J. Eng. Mech., 141(3), 1-15. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000846.
  15. Makhecha, D., Ganapathi, M. and Patel B. (2001), "Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory", Compos. Struct., 51(3), 221-236. https://doi.org/10.1016/S0263-8223(00)00133-1.
  16. Mindlin, R. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
  17. Naik, N.and Sayyad, A.S. (2018), "2D analysis of laminated composite and sandwich plates using a new fifth-order plate theory", Lat. Am. J. Solids Struct., 15 (9), 114, 1-27. http://dx.doi.org/10.1590/1679-78254834.
  18. Nguyen, N.V., Nguyen, H.X., Phan, D.H. and Nguyen-Xuan, H. (2017), "A polygonal finite element method for laminated composite plates", Int. J. Mech. Sci., 133, 863-882. https://doi.org/10.1016/j.ijmecsci.2017.09.032.
  19. Pagano, N. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177%2F002199837000400102. https://doi.org/10.1177/002199837000400102
  20. Panda, S. and Natarajan, R. (1979), "Finite element analysis of laminated composite plates", Int. J. Numer. Meth. Eng., 14(1), 69-79. https://doi.org/10.1002/nme.1620140106.
  21. Pandya, B. and Kant, T. (1988), "Finite element analysis of laminated composite plates using a higher-order displacement model", Compos. Sci. Technol., 32(2), 137-155. https://doi.org/10.1016/0266-3538(88)90003-6.
  22. Phan, N. and Reddy, J. (1985), "Analyses of laminated composite plates using a higher-order shear deformation theory", Int. J. Numer. Meth. Eng., 21(12), 2201 -2219. https://doi.org/10.1002/nme.1620211207.
  23. Pushparaj, P. and Suresha, B. (2016), "Free vibration analysis of laminated composite plates using finite element method", Polym. Polyme. Compos., 24(7), 529-538. https://doi.org/10.1177%2F096739111602400712. https://doi.org/10.1177/096739111602400712
  24. Qinm, Q. (1995), "Nonlinear analysis of thick plates by HT FE approach", Comput. Struct., 61(2), 227-281. https://doi.org/10.1016/0045-7949(96)00040-5.
  25. Reddy, B., Reddy, R., Reddy, V. and Kumar, J. (2012), "Bending analysis of laminated composite plates using finite element method", Int. J. Eng. Sci. Technol., 4(2), 177-190.
  26. Reddy, J. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  27. Reddy, J., Roman, A. and Filipa, M. (2010), "Finite element analysis of composite plates and shells", Encyclopedia Aerosp. Eng. https://doi.org/10.1002/9780470686652.eae161.
  28. Ren, J. (1987), "Bending of simply-supported, antisymmetricaily laminated rectangular plate under transverse loading", Compos. Sci. Technol., 28(3), 231-243. https://doi.org/10.1016/0266-3538(87)90004-2.
  29. Ren, J. and Hinton, H. (1986), "The finite element analysis of homogeneous and laminated composite plates using a simple higher order theory", Commun. Appl. Numer. Meth., 2(2), 217-228. https://doi.org/10.1002/cnm.1630020214.
  30. Roque, C. (2014), "Symbolic and numerical analysis of plates in bending using MATLAB", J. Symbol. Comput., 61-62, 3-11. https://doi.org/10.1016/j.jsc.2013.10.005.
  31. Savithri, S. and Varadan, T. (1993), "Large deflection analysis of laminated composite plates", J. Non-lin. Mech., 28(1), 1-12. https://doi.org/10.1016/0020-7462(93)90002-3.
  32. Sayyad, A.S. and Ghugal, Y.M. (2013a), "Effect of stress concentration on laminated plates", J. Mech. 29(2), 241-252. https://doi.org/10.1017/jmech.2012.131.
  33. Sayyad, A.S. and Ghugal, Y.M. (2013b), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech. , 5(1),1-23. https://doi.org/10.1142/S1758825113500038.
  34. Sayyad, A.S. and Ghugal, Y.M. (2014a), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10(3), 247-267. https://doi.org/10.1007/s10999-014-9244-3
  35. Sayyad, A.S. and Ghugal, Y.M. (2014c), "Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory", Struct. Eng. Mech., 51(5), 867-891. http://dx.doi.org/10.12989/sem.2014.51.5.867.
  36. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
  37. Sayyad, A.S. and Ghugal, Y.M. (2017a), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  38. Sayyad, A.S. and Ghugal, Y.M. (2017b), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1-36. https://doi.org/10.1142/S1758825117500077.
  39. Sayyad, A.S. and Ghugal, Y. M. (2014b), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stabil. Dyn., 14(6), 1-32. https://doi.org/10.1142/S0219455414500205.
  40. Senthilnathan, N., Lim, K., Lee, K. and Chow, S. (1987), "Buckling of shear-deformed plates", AIAA J., 25(9), 1268-1271. https://doi.org/10.2514/3.48742.
  41. Somireddy, M. and Rajagopal, A. (2015), "Meshless natural element method for nonlinear analysis of composite plates", J. Struct. Eng., 42(1),57-63. http://doi.org/10.3850/978-981-09-1139-3_039.
  42. Suganyadevi, S. and Singh, S. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
  43. Urthaler, Y. and Reddy, J. (2008), "A mixed finite element for the nonlinear bending, analysis of laminated composite plates based on FSDT", Mech. Adv. Mater. Struct. 15(5), 335-354. https://doi.org/10.1080/15376490802045671.
  44. Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1046. https://doi.org/10.1115/1.3408654
  45. Yin, S. and Ruan, S. (1985), "Navier solution for the elastic equilibrium problems of rectangular thin plates with variable thickness in linear and nonlinear theories", Appl. Math. Mech., 6(6), 545-558. https://doi.org/10.1007/BF01876394.
  46. Zenkour, A.M. (2007), "Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates", J. Sandw. Struct. Mater., 9(3), 213-238. https://doi.org/10.1177%2F1099636207065675. https://doi.org/10.1177/1099636207065675
  47. Zuo, H., Yang, Z., Chen, X., Xie, Y. and Miao, H. (2015), "Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory", Compos. Struct., 131, 248-258. https://doi.org/10.1016/j.compstruct.2015.04.064.