References
- Carrera, E. (1999b), "Transverse normal stress effects in multilayered plates", J. Appl. Mech., 66(4), 1004-1012. https://doi.org/10.1115/1.2791769.
- Carrera, E. (2002), "Theories and finite elements for multilayered anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649.
- Carrera, E. (2003), "Theories and finite elements for multilayered anisotropic, composite plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 216-296. https://doi.org/10.1007/BF02736649.
- Carrera, E. (2005), "Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates", AIAA J., 43(10), 2232-2242. https://doi.org/10.2514/1.11230.
- Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons Inc., New York, U.S.A.
- Goswami, S., Becker, W. (2013), "A new rectangular finite element formulation based on higher order displacement theory for thick and thin composite and sandwich plates", World J. Mech., 3(3),194-201. https://doi.org/10.4236/wjm.2013.33019.
- Grover N, Singh B. and Maiti, D. (2013), "New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates", AIAA J., 51(8),1861-1871. https://doi.org/10.2514/1.J052399.
- Hari, M., Singh, B. and Pandit, M. (2011), "Nonlinear static analysis of smart laminated composite plate", Aerosp. Sci. Technol., 15(3), 224-235. https://doi.org/10.1016/j.ast.2011.01.003.
-
Kant, T. and Kommineni, J.(1992), "
$C^0$ finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520. https://doi.org/10.1016/0045-7949(92)90436-4. -
Kant, T. and Mallikarjuna. (1990), "Non-linear dynamics of laminated plates with a higher-order theory and
$C^0$ finite elements", Int. J. Non-Lin. Mech., 26(3-4), 335-343. https://doi.org/10.1016/0020-7462(91)90063-Y. - Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X.
- Kirchhoff, G. (1850), "About the balance and movement of an elastic disc", J. Pure Appl. Math., 40, 51-88.
- Kulkarni, P., Dhoble, A. and Padole, P. (2018). "A review of research and recent trends in analysis of composite plates", Sadhana, 43(6), 96. https://doi.org/10.1007/s12046-018-0867-1.
- Li, Z.M. and Zhao, Y.X. (2015), "Nonlinear bending of shear deformable anisotropic laminated beams resting on two-parameter elastic foundations based on an exact bending curvature model", J. Eng. Mech., 141(3), 1-15. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000846.
- Makhecha, D., Ganapathi, M. and Patel B. (2001), "Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory", Compos. Struct., 51(3), 221-236. https://doi.org/10.1016/S0263-8223(00)00133-1.
- Mindlin, R. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Naik, N.and Sayyad, A.S. (2018), "2D analysis of laminated composite and sandwich plates using a new fifth-order plate theory", Lat. Am. J. Solids Struct., 15 (9), 114, 1-27. http://dx.doi.org/10.1590/1679-78254834.
- Nguyen, N.V., Nguyen, H.X., Phan, D.H. and Nguyen-Xuan, H. (2017), "A polygonal finite element method for laminated composite plates", Int. J. Mech. Sci., 133, 863-882. https://doi.org/10.1016/j.ijmecsci.2017.09.032.
- Pagano, N. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177%2F002199837000400102. https://doi.org/10.1177/002199837000400102
- Panda, S. and Natarajan, R. (1979), "Finite element analysis of laminated composite plates", Int. J. Numer. Meth. Eng., 14(1), 69-79. https://doi.org/10.1002/nme.1620140106.
- Pandya, B. and Kant, T. (1988), "Finite element analysis of laminated composite plates using a higher-order displacement model", Compos. Sci. Technol., 32(2), 137-155. https://doi.org/10.1016/0266-3538(88)90003-6.
- Phan, N. and Reddy, J. (1985), "Analyses of laminated composite plates using a higher-order shear deformation theory", Int. J. Numer. Meth. Eng., 21(12), 2201 -2219. https://doi.org/10.1002/nme.1620211207.
- Pushparaj, P. and Suresha, B. (2016), "Free vibration analysis of laminated composite plates using finite element method", Polym. Polyme. Compos., 24(7), 529-538. https://doi.org/10.1177%2F096739111602400712. https://doi.org/10.1177/096739111602400712
- Qinm, Q. (1995), "Nonlinear analysis of thick plates by HT FE approach", Comput. Struct., 61(2), 227-281. https://doi.org/10.1016/0045-7949(96)00040-5.
- Reddy, B., Reddy, R., Reddy, V. and Kumar, J. (2012), "Bending analysis of laminated composite plates using finite element method", Int. J. Eng. Sci. Technol., 4(2), 177-190.
- Reddy, J. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J., Roman, A. and Filipa, M. (2010), "Finite element analysis of composite plates and shells", Encyclopedia Aerosp. Eng. https://doi.org/10.1002/9780470686652.eae161.
- Ren, J. (1987), "Bending of simply-supported, antisymmetricaily laminated rectangular plate under transverse loading", Compos. Sci. Technol., 28(3), 231-243. https://doi.org/10.1016/0266-3538(87)90004-2.
- Ren, J. and Hinton, H. (1986), "The finite element analysis of homogeneous and laminated composite plates using a simple higher order theory", Commun. Appl. Numer. Meth., 2(2), 217-228. https://doi.org/10.1002/cnm.1630020214.
- Roque, C. (2014), "Symbolic and numerical analysis of plates in bending using MATLAB", J. Symbol. Comput., 61-62, 3-11. https://doi.org/10.1016/j.jsc.2013.10.005.
- Savithri, S. and Varadan, T. (1993), "Large deflection analysis of laminated composite plates", J. Non-lin. Mech., 28(1), 1-12. https://doi.org/10.1016/0020-7462(93)90002-3.
- Sayyad, A.S. and Ghugal, Y.M. (2013a), "Effect of stress concentration on laminated plates", J. Mech. 29(2), 241-252. https://doi.org/10.1017/jmech.2012.131.
- Sayyad, A.S. and Ghugal, Y.M. (2013b), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech. , 5(1),1-23. https://doi.org/10.1142/S1758825113500038.
- Sayyad, A.S. and Ghugal, Y.M. (2014a), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10(3), 247-267. https://doi.org/10.1007/s10999-014-9244-3
- Sayyad, A.S. and Ghugal, Y.M. (2014c), "Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory", Struct. Eng. Mech., 51(5), 867-891. http://dx.doi.org/10.12989/sem.2014.51.5.867.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
- Sayyad, A.S. and Ghugal, Y.M. (2017a), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Sayyad, A.S. and Ghugal, Y.M. (2017b), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1-36. https://doi.org/10.1142/S1758825117500077.
- Sayyad, A.S. and Ghugal, Y. M. (2014b), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stabil. Dyn., 14(6), 1-32. https://doi.org/10.1142/S0219455414500205.
- Senthilnathan, N., Lim, K., Lee, K. and Chow, S. (1987), "Buckling of shear-deformed plates", AIAA J., 25(9), 1268-1271. https://doi.org/10.2514/3.48742.
- Somireddy, M. and Rajagopal, A. (2015), "Meshless natural element method for nonlinear analysis of composite plates", J. Struct. Eng., 42(1),57-63. http://doi.org/10.3850/978-981-09-1139-3_039.
- Suganyadevi, S. and Singh, S. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
- Urthaler, Y. and Reddy, J. (2008), "A mixed finite element for the nonlinear bending, analysis of laminated composite plates based on FSDT", Mech. Adv. Mater. Struct. 15(5), 335-354. https://doi.org/10.1080/15376490802045671.
- Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1046. https://doi.org/10.1115/1.3408654
- Yin, S. and Ruan, S. (1985), "Navier solution for the elastic equilibrium problems of rectangular thin plates with variable thickness in linear and nonlinear theories", Appl. Math. Mech., 6(6), 545-558. https://doi.org/10.1007/BF01876394.
- Zenkour, A.M. (2007), "Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates", J. Sandw. Struct. Mater., 9(3), 213-238. https://doi.org/10.1177%2F1099636207065675. https://doi.org/10.1177/1099636207065675
- Zuo, H., Yang, Z., Chen, X., Xie, Y. and Miao, H. (2015), "Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory", Compos. Struct., 131, 248-258. https://doi.org/10.1016/j.compstruct.2015.04.064.