References
- Athans, M.A. and Falb, P.L. (2006), Optimal Control: An Introduction to The Theory and Its Applications, Dover Publications, Mineola, New York, U.S.A.
- Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (2006), Nonlinear Programming: Theory and Algorithms, Wiley-Interscience, New Jersey, U.S.A.
- Bellman, R.E. (1957), Dynamic Programming, Princeton University Press, Princeton, New Jersey, U.S.A.
- Benson, D.A., Huntington, G.T., Thorvaldsen, T.P. and Rao, A.V. (2006), "Direct trajectory optimization and costate estimation via an orthogonal collocation method", J. Guid. Control Dyn., 29(6), 1435-1440. https://doi.org/10.2514/1.20478.
- Betts, J.T. (1998), "Survey of numerical methods for trajectory optimization", J. Guid. Control Dyn., 21(2), 193-207. https://doi.org/10.2514/2.4231.
- Betts, J.T. (2010), Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Ed., SIAM Press, Philadelphia, U.S.A.
- Bousson, K. (2003), "Chebyshev pseudospectral trajectory optimization of differential inclusion models", Proceedings of the SAE World Aviation Congress, Montreal, Canada, January.
- Bousson, K. (2005), "Single gridpoint dynamic programming for trajectory optimization", Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, San Francisco, California, U.S.A., August.
- Bousson, K. and Machado, P. (2010), "4D flight trajectory optimization based on pseudospectral methods", World Acad. Sci. Eng. Technol. Int. J. Aerosp. Mech. Eng., 4(9), 879-885. https://doi.org/10.5281/zenodo.1076520.
- Bryson, A. E. and Ho, Y. C. (1975), Applied Optimal Control: Optimization, Estimation and, Control, Taylor & Francis, New York, U.S.A.
- Burden, R.L. and Faires J.D. (2011), Numerical Analysis (Ninth Ed.), Cengage Learning, Boston, Massachusetts, U.S.A.
- Dontchev, A.L., Hager, W.W. and Veliov, V.M. (2000), "Second-order Runge-Kutta approximations in control constrained optimal control", SIAM J. Numer. Anal., 38(1), 202-226. https://doi.org/10.1137/S0036142999351765.
- Enright, P.J. and Conway, B.A. (1992), "Discrete approximations to optimal trajectories using direct transcription and nonlinear programming", J. Guid. Control Dyn., 15(4), 994-1002. https://doi.org/10.2514/3.20934.
- Fahroo, F. and Ross, I.M. (2002), "Direct trajectory optimization by a chebyshev pseudospectral method", J. Guid. Control Dyn., 25(1), 160-166. https://doi.org/10.2514/2.4862.
- Guo, X. and Zhu, M. (2013), "Direct trajectory optimization based on a mapped chebyshev pseudospectral method", Chin. J. Aeronaut., 26(2), 401-412. https://doi.org/10.1016/j.cja.2013.02.018.
- Hagelauer, P. and Mora-Camino, F. A. C. (1998), "A soft dynamic programming approach for on-line aircraft 4D-trajectory optimization", Eur. J. Oper. Res., 107(1), 87-95. https://doi.org/10.1016/S0377-2217(97)00221-X.
- Hargraves, C.R. and Paris, S.W. (1987), "Direct trajectory optimization using nonlinear programming and collocation", J. Guid. Control Dyn., 10(4), 338-342. https://doi.org/10.2514/6.1986-2000.
- Hull, D.G. (1997), "Conversion of optimal control problems into parameter optimization problems", J. Guid. Control Dyn., 20(1), 57-60. https://doi.org/10.2514/2.4033.
- Luus, R. (2000), Iterative Dynamic Programming. Chapman & Hall, CRC, London, U.K.
- Ma, L., Shao, Z., Chen, W., Lv, X. and Song, Z. (2016), "Three-dimensional trajectory optimization for lunar ascent using Gauss pseudospectral method", Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, California, U.S.A., January.
- Marsden M. (1974), "Cubic spline interpolation of continuous functions", J. Approx. Theor., 10(2), 103-111. https://doi.org/10.1016/0021-9045(74)90109-9.
- Mazzotta, D. G., Sirigu, G., Cassaro, M., Battipede, M. and Gili, P. (2017), "4D Trajectory Optimization Satisfying Waypoint and No-Fly Zone Constraints", Proceedings of the International Conference on Applied and Theoretical Mechanics, Venice, Italy, April.
- Miyamoto, Y., Wickramasinghe, N.K., Harada, A., Miyazawa, Y. and Funabiki, K. (2013), "Analysis of fuelefficient airliner flight via dynamic programming trajectory optimization", Trans. JSASS Aerosp. Technol. Japan, 11, 93-98. https://doi.org/10.2322/tastj.11.93.
- Miyazawa, Y., Wickramasinghe, N.K., Harada, A. and Miyamoto, Y. (2013), "Dynamic programming application to airliner four dimensional optimal flight trajectory", Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, Massachusetts, U.S.A., August.
- Naidu, D. S. (2003), Optimal Control Systems, CRC Press LLC, Boca Raton, Florida, USA.
- Pontryagin, L.S. (1962), The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, U.S.A.
- Rao, A.V. (2009), "A survey of numerical methods for optimal control", Adv. Astronaut. Sci., 135(1), 497-528.
- Schwartz, A. and Polak, E. (1996), "Consistent approximations for optimal control problems based on Runge-Kutta integration", SIAM J. Control Optim., 34(4), 1235-1269. https://doi.org/10.1137/S0363012994267352.
- Seemkooei, A.A. (2002), "Comparison of different algorithm to transform geocentric to geodetic coordinates", Survey Rev., 36(286), 627-632. http://doi.org/10.1179/003962602791482966.
- Stryk, O.V. and Bulirsch, R. (1992), "Direct and indirect methods for trajectory optimization", Ann. Oper. Res., 37(1), 357-373. https://doi.org/10.1007/BF02071065.
- Tohidi, E., Pasban, A., Kilicman, A. and Noghabi, S.L. (2013), "An Efficient pseudospectral method for solving a class of nonlinear optimal control problems", Abstr. Appl. Anal., http://dx.doi.org/10.1155/2013/357931.
- Wang Z. and Ouyang J. (2013), "Curve length estimation based on cubic spline interpolation in gray-scale images", J. Zhejiang Univ. Sci. C Comput. Electron., 14(10), 777-784. https://doi.org/10.1631/jzus.C1300056.
- Zhao, J., Zhou, R. and Jin, X. (2014), "Gauss pseudospectral method applied to multi-objective spacecraft trajectory optimization, J. Comput. Theor. Nanosci., 11(10), 2242-2246. https://doi.org/10.1166/jctn.2014.3685.
Cited by
- A Modified Dynamic Programming Approach for 4D Minimum Fuel and Emissions Trajectory Optimization vol.8, pp.5, 2021, https://doi.org/10.3390/aerospace8050135