
Mining Regular Expression Rules based on q-grams

Inbok Lee

Abstract
Signature-based intrusion systems use intrusion detection rules for detecting intrusion. However, writing

intrusion detection rules is difficult and requires considerable knowledge of various fields. Attackers may

modify previous attempts to escape intrusion detection rules. In this paper, we deal with the problem of

detecting modified attacks based on previous intrusion detection rules. We show a simple method of

reporting approximate occurrences of at least one of the network intrusion detection rules, based on

q-grams and the longest increasing subsequences. Experimental results showed that our approach could

detect modified attacks, modeled with edit operations.

 Keywords : regular expression | q-gram | longest increasing subsequences | intrusion detection system

I. INTRODUCTION

Network security is a major issue. New malwares

are emerging everywhere, and their economic cost

is non-negligible. Also, cyberspace is considered

as a future theater of war and network intrusion

will be its weapon. For example, The United States

Department of Defense considers the Internet both

as threats and platform for attack [1].

Hackers begin with finding vulnerabilities in

operating systems and applications. Then such

vulnerabilities are exploited. An intrusion detection

system (IDS) reads incoming and outgoing packets.

If they contain suspicious contents exploiting such

vulnerabilities, they are blocked, or reported for

further consideration.

Once it was enough to check just headers of

packets. By checking IP addresses and ports of

source and destination, one could tell whether these

packets are from dubious origins or targeting

services with vulnerabilities. Well-known tools

include ipchains [3] and iptables [4]. Nowadays

checking headers is not enough: with deep-packet

inspection, contents in payloads are also checked.

IDS will report warnings if they contain signatures,

strings or regular expressions obtained from

analysis of such attacks.

We will focus on deep-packet inspection here. We

need one or more signatures to detect one attack.

Figure 1 shows a simple example of signatures.

Fig. 1. An example of intrusion-detection rules

Informally, rules in Figure 1 say that if there

exists a substring which begins with clsid, followed

by spaces (\s*), colon (\x3a), spaces, { (\x7b),

spaces, and either 8A674B4C-1F63 or 8A674B4D

-1F63, it will report that there is an attack. From

this example we can see that those rules are not

easy to read and to write.

There is another approach: instead of checking

incoming and outgoing network traffics against

intrusion detection rules, the intrusion detection

systems monitor system activity and learn what is

normal and what is anomalous. We call them as

anomaly-based intrusion detection systems [4, 5].

Artificial intelligence techniques are applied in

learning normal and anomalous states. If these

states are correctly recognized, it will beat

*Member, Department of Software, Korea Aerospace University

Manuscript : 2019. 09. 05
Confirmation of Publication : 2019. 09. 23

Corresponding Author : Inbok Lee,

e-mail : inboklee@kau.ac.kr

Smart Media Journal / Vol.8, No.3 / ISSN:2287-1322
http://dx.doi.org/10.30693/SMJ.2019.8.3.17 2019년 9월 스마트미디어저널 17

signature-based systems as it can handle

zero-day attacks and advanced persistent threats.

However, so far as we know, signature-based

systems are widely in use now: learning states is

hard as there are many factors to be considered

(network traffics, processes and threads, memory

usage patterns, and so on). At this moment,

signature-based intrusion detection systems are

the de facto standard.

The main drawback of signature-based intrusion

detection system is that it can only detect attacks

described in intrusion detection rules. There is no

rule detecting a new attack targeting a vulnerability

which has not been exploited yet. IDS is off-guard

until someone has dissected the attack and writes a

new rule. However, isolating the corrupted network

packets, understanding the unknown attack, and

writing signatures requires extensive knowledge

and can be done by a few experts.

There is an asymmetry between writing a new

attack and protecting systems from it. Intrusion

detection rules are freely available to system

administrators and hackers too. From this

information one can easily create a new attack by

rewriting parts described in its detection rule.

Statistics on the numbers of malwares support this

assumption [6].

There can be several approaches to handle this

situation. One is to devise methods for finding

approximate occurrences of signatures. The other

is to devise methods for writing a new intrusion

detection rules from network traffics. We will

consider a mix of these two approaches.

The main problem with automatically generated

rules is that it is not easy to maintain these rules.

Intrusion detection rules are hard to read and

understand. Automatically generated rules are

harder to read and understand, as we do not know

why these rules were made. Therefore, it would be

better if automatically generated rules are similar to

preexisting ones and if it is hard to tell them apart.

In our assumption, new attacks are just simple

variation of old ones obtained by changing words in

signatures. Then their signatures will be very close

to those for old ones. Here we need a simpler

method for finding approximate occurrences of

regular expressions. From these occurrences, we

can create a new intrusion detection rule for those

variations.

II. RELATED WORK

Vulnerability analysis and network intrusion

detection has been an important topic. Recent

works covering these topics include [7, 8, 9].

Examples of network intrusion detection systems

include Snort [10], Bro [11], and Suricata [12].

Snort is the de facto standard of intrusion detection

system: it means that other intrusion detection

systems use similar settings and signatures.

Currently most intrusion detection rules are written

in the Snort format and are distributed.

 Approximate matching on strings and regular

expression has been a major topic in algorithm

research. For simple strings, it can be done by a

simple dynamic programming [13]. Approximate

regular expression matching was first solved by

Myers in [14], but the algorithm is complicated and

impractical. Another algorithm in [15] is simpler,

but still it is not practical.

Approaches for automatic intrusion detection rules
include [16, 17, 18, 19]. Details on how to extract
rules from log data is not clearly presented.

III. PROPOSED METHOD

Here we will solve the problem based on

techniques in string algorithms. Our key

observation is that modified malwares are more or

less the same, except that they are modified to

escape intrusion detection rules. Also, we will

assume that old signatures can still detect them

partially: we can't find their occurrences as there is

no perfect match with the current intrusion

detection rules.

Instead of solving approximate regular expression

matching directly, we will make the problem

simpler and easier to handle. One key idea is that

we will consider regular expressions as simple

strings. We will consider only solid characters, that

is, skipping operators and related parts. We also

consider their relative order. Then the regular

expression is converted into a series of subpatterns.

We label each of them with increasing numbers. For

packets containing modified attacks, some

subpatterns may not appear, but there remains

matching subpatterns. Furthermore, their labels will

form an increasing sequence.

This idea can transform our problem into finding

the longest increasing subsequence [20], defined

as follows.

 18 2019년 9월 스마트미디어저널 Smart Media Journal / Vol.8, No.3 / ISSN:2287-1322

Definition 1. Given a sequence, a subsequence is

the sequence obtained by deleting zero or more

numbers. An increasing subsequence is a

subsequence whose elements are in ascending

order, and the longest increasing subsequence

(LIS) is the one with the maximum length. For

example, if there is a sequence 1, 5, 3, 4, and 7, its

longest increasing subsequence is 1, 3, 4, and 7.

Figure 2 shows how to compute the longest

common subsequence S out of the input sequence X.

The algorithm runs in O(N log N) time.

Fig. 2. An algorithm for finding LIS in X

Definition 2. A q-gram in text T is a substring of

T whose length is q. For example, when T =

ABCDEF and q = 3, we have four q-grams of T,

ABC, BCD, CDE, and DEF.

Before going any further, we discuss the relation

between approximate pattern matching and the

longest increasing subsequence. Now we analyze

the effect of one edit operation. Consider the

example in Definition 2 again.

- If we insert a character G after C, we get

ABCGDEF. The q-grams are ABC, BCG, CGD,

GDE, and DEF. Note that three q-grams were

affected (as the inserted character can be

located one of q positions) but the first and

the last ones were not affected. It tells that

there was one insertion between ABC and DEF.

- If we delete a character D, we get ABCEF.

Then we have ABC, BCE, and CEF. Still we can

see that ABC remains in T.

- If we replace D with G, we get ABCGEF. Then

we, have ABC, BCG, CGE, and GEF. Again, we can

see that ABC remains in T.

Our algorithm consists of several steps,

summarized in Figure 3. We will assume that we

know L, the maximum length of a substring in T

matching the signature.

Fig. 3. Outline of the proposed algorithm

Step 1: Split the network stream into overlapping

strings of length 2L. That is, if we represent the

network stream as T, we will create strings T[0 :

2L-1], T[L : 3L-1], T[2L : 4L-1], and so on. It is

evident that any occurrence of the signature will be

contained in one of these strings.

Step 2: We pick one rule from the rule sets. Then

create q-grams of the chosen rule. For example, if

the rule is 8A674B4C and q = 4, then the q-grams

are 8A67, A674, 674B, 74B4, and 4B4C. We will

also assign them numbers between one and five in

that order. That is, label(8A67)=1, label(A674)=2,

label(674B)=3, label(74B4)=4, and

label(4B4C)=5.

Step 3: We will create q-grams from the network

stream and check whether there are common

q-grams found in Step 2. A naive approach will

take O(qL) time, but it can be done in O(L) time

using the technique in [18]. For each q-gram, we

Smart Media Journal / Vol.8, No.3 / ISSN:2287-1322 2019년 9월 스마트미디어저널 19

check whether it is also contained in those of the

chosen rule. If so, we represent it with its label

obtained in the previous step. Otherwise, we

represent it with zero. For example, assume that

the network stream was 98A6754B4C. With q = 4,

the q-grams are 98A6, 8A67, A675, 6754, 754B, and

54B4. We can see that 8A67 and 54B4 are contained

in the q-grams of the chosen rule and their labels

were 1 and 5, respectively. Then the output is 0, 1,

0, 0, 0, 5. Note that we create q-grams for words

in the rule only: wildcards or special symbols are

ignored. A complicated procedure can handle them,

but we did not see a noticeable enhancement in our

experiments, so we choose to ignore them.

Step 4: Find the LIS in the sequence obtained in

Step 3. Note that we will ignore zeros as it doesn't

mean one match of a common q-gram between the

rule and the stream. In our example, the longest

increasing subsequence is 0, 1, 5. After removing

the first zero, we obtain that 1, 5. It means that the

network stream of length L contained a substring

which begin with 8A67, followed by 54B4. As the

length of the sequence is O(L), the time complexity

is O(L log L).

Step 5: Compute the similarity score. If there were

k q-grams from the rule, and the length of the LIS

is `l, the similarity score is `l/k. The reason why we

divide l with k, that is, normalize the score is that a

long rule can contain many q-grams and the chance

of unintended matches is high. For each signature,

we store its similarity score.

Step 6: Repeat Steps 2~5 for each signature in the

intrusion detection rules. Sort them by the

similarity scores and report ones with highest

scores. It is easy to show that the time complexity

is O(mL log L), where m is the number of intrusion

detection rules.

IV. EXPERIMENTAL RESULTS

We used the snort-snapshot-2983 rule sets for

the experiment. There were 8,472 rules and 1,586

distinct regular expressions were contained. The

experiment was done on an iMac, running macOS

Sierra 10.12.5. The scripts were written in Python

3.4.1.

The experiment is composed with 13 rounds, in

which we randomly picked 200 intrusion detection

rules, and created random packets containing the

signature using Sniffles [22, 23]. It reads one

intrusion detection rule in Snort format and then

creates traffics in PCAP format [24]. To simulate

the modified attacks, we randomly picked at most

two positions in the rule and modified it with edit

operations randomly chosen. Then we generated

packets with the modified rules. The results were

packets with at most two edit operations, insertions,

deletions, and substitutions.

Table 1 shows the summary of experimental

results. Out of 200 modified rules, our algorithm

was able to find the original intrusion detection rule

even with the modified packets. We used q = 3 and

q = 4, respectively.

One may wonder why the original rule may not

have the highest score. After a closer look, we

found that one edit operation could make q

q-grams mismatches, and another longer rule

might have more matching q-grams and having

higher score than the original one. We tried other

scoring schemes, but with them sometimes we

were not able to find the original rule within Top 10.

Surely, our approach favors longer rules as they

have more matching q-grams regardless of its

meaning. We believe that with more experiments

we can design a better scoring function.

Larger q will make the algorithm run faster as it

will make fewer q-grams, but it may miss the

answer. In our experiment when q > 4, there were

cases when the original one was not included in

Top 10.

Table 1. Experimental Results

 q=3 q=4

Round Within Top
10

Not within
Top 10

Within Top
10

Not within
Top 10

1 200 0 200 0
2 200 0 200 0
3 200 0 200 0
4 200 0 200 0
5 200 0 200 0
6 200 0 200 0
7 200 0 200 0
8 200 0 200 0
9 200 0 200 0

10 200 0 200 0
11 200 0 200 0
12 200 0 200 0
13 200 0 200 0

V. CONCLUSION

We showed that mining a new rule for a modified

attack can be done easily with a combination of

q-grams and LIS. It is based on well-known

 20 2019년 9월 스마트미디어저널 Smart Media Journal / Vol.8, No.3 / ISSN:2287-1322

techniques of string algorithm, which is simple and

easy to understand and to implement. Also, it can

be turned into a parallel one by assigning each

processor with different packets.

Experimental results show that our approach can

detect the modified attacks with the original

intrusion detection rules. From this information one

can find clues to write a new intrusion detection

rule.

Future works include designing an efficient scoring

function and another method of mining a new

intrusion detection rule based on the current rules.

REFERENCES

[1] US Department of Defense Cyber
Strategy, US Department of Defense, pp.
2-8, 2015.

[2] Linux IP Firewalling Chains.
http://people.netfilter.org/rusty/ipchains
(accessed Sept., 25, 2019).

[3] Netfilter: firewalling, NAT, and
packet mangling for Linux.
http://www.netfilter.org (accessed Sept.,
25, 2019).

[4] K. Wang, "Anomalous Payload

-Based Network Intrusion Detection,”
Recent Advances in Intrusion Detection.
Springer Berlin. doi:10.1007/978-3-
540-30143-1_11.

[5] R. Perdisci, D. Ariu, P. Fogla, G.

Giacinto, and W. Lee, “McPAD : A

Multiple Classification System for
Accurate Payload-based Anomaly

Detection,” Computer Networks, Special

Issue on Traffic Classification and Its
Applications to Modern Networks, vol. 5,
no. 6, pp. 864-881, 2009.

[6] AV-TEST: Malware statistics.
http://www.av-test.org/en/statistics/
malware (accessed Sept., 25, 2019).

[7] K.H. Lee and G.S. Ryu, "Research
for improving vulnerability of unmanned
aerial vehicles," Smart Media Journal,
vol. 7, no. 3, pp. 64-71, 2018

[8] W.J. Joe, H.J. Shin, and H.S. Kim,
"A log visualization method for network
security monitoring," Smart Media
Journal, vol. 7, no. 4, pp. 70-78, 2018

[9] S.I. Bae and E.G. Im, "Unpacking
Technique for In-memory malware
injection technique," Smart Media
Journal, vol. 8, no. 1, pp. 19-26, 2019

[10] Snort: Network intrusion
detection and prevention system.
http://www.snort.org (accessed Sept.,
25, 2019).

[11] The Bro Network Security
Monitor. https://www.bro.org (accessed
Sept., 25, 2019).

[12] Suricata: Open IDS / IPS / NSM
engine. https://suricata-ids.org
(accessed Sept., 25, 2019).

[13] G. Navarro, “A guided tour to

approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp.
31-88, 2001

[14] E.W. Myers, “A Four Russians

Algorithm for Regular Expression

Pattern Matching,” Journal of ACM, vol.

39, no. 2, pp. 430-448, 1992
[15] D. Belazzougui and M. Raffinot,

“Approximate regular expression

matching with multi-strings,” Journal of
Discrete Algorithms, vol. 18, pp. 14-21,
2013

[16] H. Altwaijry and K. Shahbar,

“Automatic SNORT Signatures

Generation by using Honeypot,” Journal
of Computers, vol. 8, no. 12, pp.
3280-3286, 2013

[17] B. Rice, “Automated Snort

Signature Generation”, Masters Theses,
James Madison University, 2014

[18] S. Ashfaq, M.U. Farooq, and A.

Karim, “Efficient rule generation for

cost-sensitive misuse detection using

genetic algorithms,” Proc. of CIS, pp.

282-285, 2006
[19] H.A. Kim and B. Karp,

“Autograph: Toward automated,

distributed worm signature detection,”
USENIX Security Symposium, pp.
271-286, 2004

[20] C. Schensted, “Longest increasing

and decreasing subsequences,” Canadian

Smart Media Journal / Vol.8, No.3 / ISSN:2287-1322 2019년 9월 스마트미디어저널 21

Journal of Mathematics, vol. 13, pp.
179-191, 1961

[21] R.M. Karp and M.O. Rabin,

“Efficient randomized pattern-matching

algorithms,” IBM Journal of Research
and Development, vol.31, no. 2, pp.
249-260, 1987

[22] Sniffles: Capture Generator for
IDS and Regular Expression Evaluation.
https://github.com/petabi/sniffles
(accessed Sept., 25, 2019).

[23] M. Shao, M.S. Kim, V.C. Valgenti,

and J. Park, “Grammar-Driven

Workload Generation for Efficient
Evaluation of Signature-Based Network

Intrusion Detection Systems,” IEICE
Transactions on Information and
Systems, vol. 99-D, no. 8, pp.
2090-2099, 2016

[24] tcpdump and libpcap. http://www.
tcpdump.org (accessed Sept., 25,
2019).

Authors

Inbok Lee

He received his B.E., M.S.,

and Ph.D degree in

Computer Engineering from

Seoul National University in

1997, 1999, and 2004,

respectively. Since 2006, he has been an

associate professor in Department of

Software, Korea Aerospace University, Korea.

His research interests are design and analysis

of algorithms, competitive programming, and

intrusion detection system.

 22 2019년 9월 스마트미디어저널 Smart Media Journal / Vol.8, No.3 / ISSN:2287-1322

