DOI QR코드

DOI QR Code

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide against Fusarium oxysporum f. sp. batatas Isolated from Stored Sweetpotato: Study II

  • Lee, Ye Ji (Department of Biosystems and Biotechnology, Korea University) ;
  • Jeong, Jin-Ju (Department of Biosystems and Biotechnology, Korea University) ;
  • Jin, Hyunjung (Department of Biosystems and Biotechnology, Korea University) ;
  • Kim, Wook (Department of Biosystems and Biotechnology, Korea University) ;
  • Jeun, Young Chull (Faculty of Bioscience and Industry, College of Applied Life Sciences, Jeju National University) ;
  • Yu, Gyeong-Dan (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Ki Deok (Department of Biosystems and Biotechnology, Korea University)
  • Received : 2019.04.03
  • Accepted : 2019.07.05
  • Published : 2019.10.01

Abstract

Chlorine dioxide ($ClO_2$) has been widely used as an effective disinfectant to control fungal contamination during postharvest crop storage. In this study, Fusarium oxysporum f. sp. batatas SP-f6 from the black rot symptom of sweetpotato was isolated and identified using phylogenetic analysis of elongation factor 1-${\alpha}$ gene; we further examined the in vitro and in vivo inhibitory activities of $ClO_2$ gas against the fungus. In the in vitro medium tests, fungal population was significantly inhibited upon increasing the concentration and exposure time. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by treatment using various $ClO_2$ concentrations and treatment times to assess fungus-induced disease development in the slices. Lesion diameters decreased at the tested $ClO_2$ concentrations over time. When sweetpotato roots were dip-inoculated in spore suspensions prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations significantly decreased at the tested concentrations for 30-60 min. Taken together, these results showed that $ClO_2$ gas can effectively inhibit fungal growth and disease development caused by F. oxysporum f. sp. batatas on sweetpotato. Therefore, $ClO_2$ gas may be used as a sanitizer to control this fungus during postharvest storage of sweetpotato.

Keywords

References

  1. Beuchat, L. R., Pettigrew, C. A., Tremblay, M. E., Roselle, B. J. and Scouten, A. J. 2004. Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. J. Food Prot. 67:1702-1708. https://doi.org/10.4315/0362-028X-67.8.1702
  2. Bhagat, A., Mahmoud, B. S. and Linton, R. H. 2011. Effect of chlorine dioxide gas on Salmonella enterica inoculated on navel orange surfaces and its impact on the quality attributes of treated oranges. Foodborne Pathog. Dis. 8:77-85. https://doi.org/10.1089/fpd.2010.0622
  3. Chen, Z. and Zhu, C. 2011. Modelling inactivation by aqueous chlorine dioxide of Dothiorella gregaria Sacc. and Fusarium tricinctum (Corda) Sacc. spores inoculated on fresh chestnut kernel. Lett. Appl. Microbiol. 52:676-684. https://doi.org/10.1111/j.1472-765X.2011.03061.x
  4. Clark, C. A., Ferrin, D. M., Smith, T. P. and Holmes, G. J. 2013. Compendium of sweetpotato diseases, pests, and disorders. 2nd ed. APS Press, St. Paul, MN, USA. 160 pp.
  5. Du, J., Han, Y. and Linton, R. H. 2002. Inactivation by chlorine dioxide gas ($ClO_2$) of Listeria monocytogenes spotted onto different apple surfaces. Food Microbiol. 19:481-490. https://doi.org/10.1006/fmic.2002.0501
  6. Farr, D. F. and Rossman, A. Y. 2018. Fungal databases. U.S. National Fungus Collections, ARS, USDA. URL https://nt.arsgrin.gov/fungaldatabases/ [16 October 2018].
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  8. Fitch, W. M. 1971. Towards defining the course of course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20:406-416. https://doi.org/10.2307/2412116
  9. Gates, D. J. 1998. The chlorine dioxide handbook (Water disinfection series). American Water Works Association, Denver, CO, USA. 186 pp.
  10. Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
  11. Kim, Y., Hutmacher, R. B. and Davis, R. M. 2005. Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Dis. 89:366-372. https://doi.org/10.1094/PD-89-0366
  12. Kim, H. S., Sang, M. K., Myung, I. S., Chun, S. C. and Kim, K. D. 2009. Characterization of Bacillus luciferensis strain KJ2C12 from pepper root, a biocontrol agent of Phytophthora blight of pepper. Plant Pathol. J. 25:62-69. https://doi.org/10.5423/PPJ.2009.25.1.062
  13. Lee, Y. J., Jeong, J.-J., Jin, H., Kim, W., Yu, G.-D. and Kim, K. D. 2019. In vitro and in vivo inhibitory effects of gaseous chlorine dioxide against Diaporthe batatas isolated from stored sweetpotato. Plant Pathol. J. 35:77-83. https://doi.org/10.5423/PPJ.OA.09.2018.0184
  14. Levene, H. 1960. Robust tests for equality of variances. In: Contributions to probability and statistics: essays in honor of Harold Hotelling, eds. by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow and H. B. Mann, pp. 278-292. Stanford University Press, Stanford, CA, USA.
  15. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388 pp.
  16. Mahovic, M. J., Tenney, J. D. and Bartz, J. A. 2007. Applications of chlorine dioxide gas for control of bacterial soft rot in tomatoes. Plant Dis. 91:1316-1320. https://doi.org/10.1094/PDIS-91-10-1316
  17. Park, J. S. 1967. Fungous diseases of plant in Korea. Chungnam National University, Daejeon, Korea. 86 pp.
  18. Popa, I., Hanson, E. J., Todd, E. C., Schilder, A. C. and Ryser, E. T. 2007. Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries. J. Food Prot. 70:2084-2088. https://doi.org/10.4315/0362-028X-70.9.2084
  19. Ray, R. C. and Ravi, V. 2005. Post-harvest spoilage of sweet potato in tropics and control measures. Crit. Rev. Food Sci. Nutr. 45:634-644.
  20. Sang, M. K., Kim, H. S., Myung, I. S., Ryu, C. M., Kim, B. S. and Kim, K. D. 2013. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int. J. Syst. Evol. Microbiol. 63:2835-2840. https://doi.org/10.1099/ijs.0.048496-0
  21. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  22. Sanusi, M. M., Lawal, O. I., Sanusi, R. A. and Adesogan, A. O. 2016. Profitability of sweet potato production in derived savannah zone of Ogun State, Nigeria. J. Agric. Soc. Res. 16:16-27.
  23. Sun, C., Zhu, P., Ji, J., Sun, J., Tang, L., Pi, F. and Sun, X. 2017. Role of aqueous chlorine dioxide in controlling the growth of Fusarium graminearum and its application on contaminated wheat. LWT - Food Sci. Technol. 84:555-561. https://doi.org/10.1016/j.lwt.2017.03.032
  24. Sun, X., Baldwin, E. and Bai, J. 2019. Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables: a review. Food Control 95:18-26. https://doi.org/10.1016/j.foodcont.2018.07.044
  25. Sy, K. V., Murray, M. B., Harrison, M. D. and Beuchat, L. R. 2005. Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, yeasts, and molds on fresh and fresh-cut produce. J. Food Prot. 68:1176-1187. https://doi.org/10.4315/0362-028X-68.6.1176
  26. Thompson, A. H., Narayanin, C. D., Smith, M. F. and Slabbert, M. M. 2011. A disease survey of Fusarium wilt and Alternaria blight on sweet potato in South Africa. Crop Prot. 30:1409-1413. https://doi.org/10.1016/j.cropro.2011.07.017
  27. Tweddell, R. J., Boulanger, R. and Arul, J. 2003. Effect of chlorine atmospheres on sprouting and development of dry rot, soft rot and silver scurf on potato tubers. Postharvest Biol. Technol. 28:445-454. https://doi.org/10.1016/S0925-5214(02)00205-3
  28. United States Environmental Protection Agency. 2006. Reregistration eligibility decision (RED) for chlorine dioxide and sodium chlorite (Case 4023). URL https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-020503_3-Aug-06.pdf [16 August 2018].
  29. Vaid, R., Linton, R. H. and Morgan, M. T. 2010. Comparison of inactivation of Listeria monocytogenes within a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments. Food Microbiol. 27:979-984. https://doi.org/10.1016/j.fm.2010.05.024
  30. Wang, T., Qi, J., Wu, J., Hao, L., Yi, Y., Lin, S. and Zhang, Z. 2016. Response surface modeling for the inactivation of Bacillus subtilis subsp. niger spores by chlorine dioxide gas in an enclosed space. J. Air Waste Manage. Assoc. 66:508-517. https://doi.org/10.1080/10962247.2016.1150365
  31. Wu, V. C. and Rioux, A. 2010. A simple instrument-free gaseous chlorine dioxide method for microbial decontamination of potato during storage. Food Microbiol. 27:179-184. https://doi.org/10.1016/j.fm.2009.08.007
  32. Wu, B., Li, X., Hu, H., Liu, A. and Chen, W. 2011. Effect of chlorine dioxide on the control of postharvest diseases and quality of litchi fruit. Afr. J. Biotechnol. 10:6030-6039.
  33. Yuk, H. G., Bartz, J. A. and Schneider, K. R. 2006. The effectiveness of sanitizer treatments in inactivation of Salmonella spp. from bell pepper, cucumber, and strawberry. J. Food Sci. 71:95-99.