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DEFINING FIELDS OF SPECIAL SUPERSINGULAR K3

SURFACES

Junmyeong Jang

Abstract. In this paper, we prove that a special supersingular K3 surface

of Artin invariant σ over a field of odd characteristic p has a model over a

finite field of p2σ elements.

1. Introduction

Let k be an algebraically closed field of odd characteristic p.

A K3 surface X over k is supersingular if the rank of the Neron-Severi lattice
NS(X) is 22. A K3 surface X over k is supersingular if and only if the height of

the formal Brauer group B̂rX is infinite. Let X be a supersingular K3 surface
over k. The signature of NS(X) is (1,21). The discriminant group of the
Neron-Severi group of X

l(NS(X)) = NS(X)∗/NS(X)

is isomorphic to (Z/p)2σ. Here σ is an integer between 1 and 10. We call σ
the Artin-invariant of X. The discriminant of the induced quadratic form on
l(NS(X)) is (−1)σ∆. Here ∆ is a non quadratic residue modulo p. Hence there
is no σ-dimensional isotropic (Z/p)−subspace of l(NS(X)). The integral lat-
tice satisfying all these conditions is unique up to isomorphism. Therefore the
Neron-Severi lattice NS(X) is uniquely determined by the base characteristic p
and the Artin-invariant σ up to isomorphism. All the supersingular K3 surfaces
of Artin-invariant σ form a family of σ− 1 dimension. A supersingular K3 sur-
face of Artin-invariant 1 is unique up to isomorphism. For detail explanation
and references, see [2], section 2.
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For a K3 surface X over k, we say the order of the image of a natural
representation

ρX : Aut(X)→ GL(H0(X,Ω2
X/k))

is the non-symplectic index of X and we denote this by NX . In a previous work
([3]), we showed that if X is a supersingular K3 surface of Artin-invariant σ,
the non-symplectic index of X, NX = pm + 1 for m = 0 or m is a positive
integer such that σ/m is an odd integer. Also we proved that there exists a
unique supersingular K3 surface of Artin-invariant σ over k such that the non-
symplectic index is equal to pσ+1. We call this unique supersingular K3 surface
is a special supersingular K3 surface of Artin-invariant σ and we denote this
by Xp,σ. Because, over any algebraically closed field of characteristic p, there
exists a unique special supersingular K3 surface of Artin-invariant σ, Xp,σ has
a model over an algebraic closure of the prime field Fp, in particular, Xp,σ has
a model over a finite field. In [3], we see that many special supersingular K3
surfaces are defined over prime fields. Also we raised a question whether every
special supersingular K3 surface has a model over a prime field. In this article,
we will give a partial answer to that question. Precisely we prove the following.

Theorem 1.1. A special supersingular K3 surface Xp,σ has a model over a
finite field Fp2σ of p2σ elements.

2. Preliminary : Period space of supersingular K3 surface

In this section, we review the classification of supersingular K3 surfaces in
terms of the period space. For the detail, we refer to [3], section 3.

Let k be an algebraically closed field of odd characteristic p. Let W and K be
the ring of Witt vectors of k and the fraction field of W respectively. Assume X
is a supersingular K3 surface of Artin invariant σ over k. Let us fix an abstract
lattice Np,σ which is isomorphic to NS(X). Let lp,σ is the discriminant group
of Np,σ. Hence lp,σ is a 2σ-dimensional Fp-quadratic space. We set a Frobenius
semi-linear endomorphism of lp,σ ⊗ k, f = id ⊗ Fk. Here Fk is the Frobenius
morphism of k. A σ-dimensional isotropic k-subspace K of lp,σ ⊗ k is a strictly
characteristic subspace of lp,σ ⊗ k if

(1) K + f(K) is of dimension σ + 1
(2) Kf=id = 0

Let K be a strictly characteristic space of lp,σ ⊗ k. Then

l(K) = K ∩ f−1(K) ∩ · · · ∩ f1−σ(K)

is a line in lp,σ ⊗ k. We choose a nonzero vector v1 ∈ l(K). Let vi = f i−1(v1)
for i = 2, · · · , 2σ. If the pairing v1 · vσ+1 = 0, then K + f(K) is an isotropic
subspace of dimension σ + 1. It is impossible, so v1 · vσ+1 6= 0. If we replace v1
by ξv1, then vi is changed into ξp

i−1

vi. After a suitable scalar multiplication,
we may assume v1 · vσ+1 = 1. In this case, v1 is uniquely determined up
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to multiplication by a pσ + 1-th root of unity. Let ai = v1 · vσ+i+1 ∈ k for
i = 1, · · · , σ−1. Since the pairing of lp,σ⊗k is defined over Fp, v1+j ·vσ+1+i+j =

fk(v1) · fk(vσ+i+1) = F jk (ai). The intersection matrix of lp,σ in terms of the

base v1, · · · , v2σ is

(
0 A
At 0

)
, where

A =


1 a1 a2 a3 · · · aσ−1
0 1 Fk(a1) Fk(a2) · · · Fk(aσ−2)
0 0 1 F 2

k (a1) · · · F 2
k (aσ−3)

...
...

...
...

...
0 0 0 0 · · · 1

 . (2.1)

For special supersingular K3 surface Xp,σ, the matrix A in (2.1) is equal to the
identity matrix of rank σ, Iσ. (See [3], page 8) If we replace v1 by ξv1 for a

pσ + 1-th root of unity ξ, then ai is changed into ξp
σ+i+1ai. We give an action

of µpσ+1 on Aσ−1 by

ξ · (x1, · · · , xσ−1) = (ξp
σ+1+1x1, ξ

pσ+2+1x2, · · · , ξp
2σ−1+1xσ−1).

Then (a1, · · · , aσ−1) ∈ Aσ−1/µpσ+1 is determined by K. If g ∈ O(lp,σ), g(K) is
also a strictly characteristic subspace and f(K) gives the same element (a1, · · · , aσ−1) ∈
Aσ−1/µpσ+1 with K in the above construction. Let M be the set of O(lp,σ)-
conjugacy classes of strictly characteristic subspaces of lp,σ. By all the above,
we have a map

Φ :M→ A/µpσ+1, K 7→ (a1, · · · , aσ−1).

It is known that Φ is bijective. ([5], 3.21) In other words, all the O(lp,σ)-
conjugacy classes of strictly characteristic subspaces are classified by Aσ−1/µpσ+1.

Let X be a supersingular K3 surface of Artin-invariant σ over k. The sec-
ond crystalline cohomology of X, H2

cris(X/W ) is a free W module of rank 22
equipped with a unimodular lattice structure. The cycle map gives the following
chain of W -lattices of same rank

NS(X)⊗W ⊂ H2
cris(X/W ) ⊂ NS(X)∗ ⊗W (⊂ NS(X)⊗K).

The cokernel of the cycle map KX = H2
cris(X/W )/(NS(X) ⊗ W ) is a σ-

dimensional isotropic k-subspace of l(NS(X))⊗k = (NS(X)∗⊗W )/(NS(X)⊗
W ). We say KX is the period space of X. It is known that KX is a strictly
characteristic subspace of l(NS(X))⊗ k ' lp,σ ⊗ k. ([5], 3.20) Hence we have a
map

Ψ : {isomorphic classes of supersingular K3 surfaces of Artin invariant
σ} →M.

Moreover the following is known.

Theorem 2.1 ([6], Theorem III). Ψ is bijective.
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Therefore the composition Φ ◦ Ψ is bijective, so the isomorphic classes of
supersingular K3 surfaces of Artin-invariant σ are classified by Aσ−1/µpσ+1.

3. Galois descent

Let E be a field and F be a finite Galois extension of E. Let G = Gal(F/E).
Set F ′ = F ⊗E F , F ′′ = F ⊗E F ⊗E F . There are two projections p1, p2 :
SpecF ′ → SpecF and three projections q12, q13, q23 : SpecF ′′ → SpecF ′. We
have the canonical identities

p1 ◦ q12 = p1 ◦ q13, p2 ◦ q13 = p2 ◦ q23 and p2 ◦ q12 = p1 ◦ q23.

Let us set SpecF ′ =
∐
τ∈G SpecFτ and SpecF ′′ =

∐
τ,η∈G SpecFτ,η. Here each

of Fτ and Fτ,η is isomorphic to F over E, so we may set Fτ = F . Also, we
may regard the restriction (p1|SpecFτ )∗ : F → Fτ as the identity for each τ ∈ G
and (p2|SpecFτ )∗ = τ : F → Fτ . In a similar way, we may set Fτ,η = F . Then
q12|SpecFτ,η : SpecFτ,η → SpecFτ and we may regard (q12|SpecFτ,η)∗ : Fτ →
Fτ,η as the identity. Also we may regard (q13|SpecFτ,η )∗ : Fη → Fτ,η as the
identity and (q23|SpecFτ,η )∗ = τ : Fτ−1η → Fτ,η.

Assume X is a scheme over SpecF . Let τX (τ ∈ G) be the base change of
X/ SpecF by τ : F → F .

τX - X

SpecF
? Spec τ- SpecF

?

A descent datum of X/F/E is an isomorphism γ : p∗1X → p∗2X over SpecF ′

such that
q∗23(γ) ◦ q∗12(γ) = q∗13(γ) : q∗12p

∗
1X → q∗23p

∗
2X.

To give a descent datum of X/F/E is equivalent to the following :

(1) There is an F -isomorphism gτ : X → τX for all τ ∈ G.
(2) (Spec τ)∗(gη) ◦ gτ : X → τX → τ(ηX) = τηX is equal to gτη : X →

τηX.

Here, note that for τ, η ∈ G, τη = τ ◦η ∈ G and Spec η◦Spec τ = Spec τη. Hence
τ(ηX), the base change of ηX by τ is equal to τηX, the base change of X by τη.

If there is an F -isomorphism β : X → Y ⊗E F for an E-scheme Y , it gives
the canonical descent datum

p∗1X
p∗1(β)- p∗1(Y ⊗E F ) = p∗2(Y ⊗E F )

p∗2(β−1)- p∗2(X).

This kind of descent datum is called an effective descent datum. It is known
that if X/F is a quasi-projective variety, every descent datum of X/F/E is an
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effective descent datum. ([4], 16.25)

Now assume E is a finite field Fpr and F is a finite Galois extension of
E, Fprm . Let α be the pr-th power Frobenius morphism of F . Hence G =
Gal(F/E) =< α > and G ' Z/m.

Lemma 3.1. Assume X is a quasi-projective variety over F . If there exists an
F -isomorphism gα : X → αX such that the composition

α(m−1)∗(gα)◦α(m−2)∗(gα)◦· · ·◦α∗(gα)◦gα : X → αX → · · · → αm−1X → αmX = X

is the identity, then X = Y ⊗E F for a variety Y over E.

Proof. It is enough to give a descent datum for X/F/E. We set gid : X → X =
id and

gαi = α(i−1)∗(gα) ◦ · · · ◦ α∗(gα) ◦ gα : X → αiX

for 1 ≤ i ≤ m− 1. And we set

g =
∐

0≤i≤m−1 gαi : p∗1X =
∐
X →

∐
αiX = p∗2X.

If i+ j ≤ m− 1, then, by definition,

αi∗(gαj ) ◦ gαi = gαi+j = gαjαi : X → αiX → αjαiX.

If i+ j ≥ m, then

αi∗(gαj ) ◦ gαi = gαi+j−m ◦ id = gαjαi : X → X → αi+j−mX = αjαiX.

Therefore g is a descent datum for X/F/E. �

4. Proof of Theorem 1.1

Let k be an algebraic closure of the prime field Fp for an odd prime number p.
Let X be a supersingular K3 surface of Artin-invariant σ over k. The Frobenius
morphism Fk is a topological generator of Gal(k/Fp). Let F rkX be the base
change of X by F rk : k → k.

F rkX
F rk - X

k
? F rk - k

?

The induced map F r∗k : NS(X)→ NS(F rkX) is an isomorphism. Also NS(X)
andNS(F rkX) are isomorphic toNp,σ. We may setNS(X) = Np,σ = NS(F rkX)
and we may regard F r∗k : NS(X)→ NS(F rkX) as the identity map of Np,σ. We
let FW : W → W and FK : K → K be the Frobenius morphisms of W and K
respectively. Let Wr be the free W -module of rank 1, W via F rW : W → W .
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The crystalline cohomology H2
cris(F

r
kX/W ) is identified with H2

cris(X/W )⊗Wr

and the following diagram commutes.

NS(F rkX) �
F r∗k NS(X)

H2
cris(X/W )⊗Wr

?
�id⊗ 1 = F r∗k H2

cris(X/W ).

?

Here the vertical arrows are the cycle maps. Set f = id⊗FK : Np,σ⊗K → Np,σ⊗
K. If we regard H2

cris(X/W ) and H2
cris(F

r
kX/W ) as W -lattices inside Np,σ⊗K,

then H2
cris(F

r
kX/W ) = fr(H2

cris(X/W )). Therefore K(F rkX) = fr(K(X)) in
lp,σ ⊗ k.

Now assume X is a special supersingular K3 surface of Artin-invariant σ
over k. Then the matrix A in (2.1) is the identity matrix Iσ and it is not
difficult to see that f(v2σ) = v1 in the notation of section 1. It follows that
K(F 2σ

k X) = K(X). Now it is obvious that F 2σ∗
k : NS(X)→ NS(F 2σ

k X) sends
the ample cone to the ample cone and the period space to the period space.
Hence, by the crystalline Torelli theorem ([6] Theorem II, [1] Theorem 5.1.9),
there exists a unique isomorphism g2σ : F 2σ

k X → X over k such that

g∗2σ = F 2σ∗
k : NS(X)→ NS(F 2σ

k X).

We set E = Fp2σ and F = Fp2σm such that X, g2σ and all the classes of NS(X)
are defined over F . Let α be the p2σ-th power morphism of F . Then

α(m−1)∗(g2σ) ◦ · · ·α∗(g2σ) ◦ g2σ : X → X

induces the identity morphism on NS(X), so it is the identity map of X
by the crystalline Torelli theorem. Therefore g2σ satisfies the condition of
Lemma 2.1 and it gives a descent datum for X/F/E and the proof is com-
plete. �
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