DOI QR코드

DOI QR Code

Introduction of Vaccinomics to Develop Personalized Vaccines in Light of Changes in the Usage of Hantaan Virus Vaccine (Hantavax®) in Korea

  • Bae, Jong-Myon (Department of Preventive Medicine, Jeju National University School of Medicine)
  • Received : 2019.01.06
  • Accepted : 2019.08.02
  • Published : 2019.09.30

Abstract

The Ministry of Food and Drug Safety of Korea made an official announcement in March 2018 that the total number of inoculations of Hantaan virus vaccine ($Hantavax^{(R)}$) would change from 3 to 4. Some aspects of this decision remain controversial. Based on the characteristics of Hantaan virus (HTNV) and its role in the pathogenesis of hemorrhagic fever with renal syndrome, it might be difficult to develop an effective and safe HTNV vaccine through the isolate-inactivate-inject paradigm. With the development of high-through-put 'omics' technologies in the 21st century, vaccinomics has been introduced. While the goal of vaccinomics is to develop equations to describe and predict the immune response, it could also serve as a tool for developing new vaccine candidates and individualized approaches to vaccinology. Thus, the possibility of applying the innovative field of vaccinomics to develop a more effective and safer HTNV vaccine should be considered.

Keywords

References

  1. Ministry of Food and Drug Safety. Online library of drugs and foods [cited 2018 Dec 16]. Available from: http://drug.mfds.go.kr/html/boardLinkBody.jsp?p_menuId=040803&p_boardSeq=107&p_seq=3201&p_sub_menuId=04080301 (Korean).
  2. Oh MD, Lee JK. Milestones in history of adult vaccination in Korea. Clin Exp Vaccine Res 2012;1(1):9-17. https://doi.org/10.7774/cevr.2012.1.1.9
  3. Halloran ME, Longini IM Jr, Struchiner CJ. Design and interpretation of vaccine field studies. Epidemiol Rev 1999;21(1):73-88. https://doi.org/10.1093/oxfordjournals.epirev.a017990
  4. Chu YK, Gligic A, Tomanovic S, Bozovjc B, Obradovic M, Woo YD, et al. A field efficacy trial of inactivated hantaan virus vaccine (Hantavax (TM)) against hemorrhagic fever with renal syndrome (HFRS) in the endemic areas of Yugoslavia from 1996 to 1998. J Korean Soc Virol 1999;29(2):55-64 (Korean).
  5. Park K, Kim CS, Moon KT. Protective effectiveness of hantavirus vaccine. Emerg Infect Dis 2004;10(12):2218-2220. https://doi.org/10.3201/eid1012.040684
  6. Jung J, Ko SJ, Oh HS, Moon SM, Song JW, Huh K. Protective effectiveness of inactivated hantavirus vaccine against hemorrhagic fever with renal syndrome. J Infect Dis 2018;217(9):1417-1420. https://doi.org/10.1093/infdis/jiy037
  7. Sohn YM, Rho HO, Park MS, Kim JS, Summers PL. Primary humoral immune responses to formalin inactivated hemorrhagic fever with renal syndrome vaccine (Hantavax): consideration of active immunization in South Korea. Yonsei Med J 2001;42(3):278-284. https://doi.org/10.3349/ymj.2001.42.3.278
  8. Kruger DH, Schonrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. Hum Vaccin 2011;7(6):685-693. https://doi.org/10.4161/hv.7.6.15197
  9. Avsic-Zupanc T, Saksida A, Korva M. Hantavirus infections. Clin Microbiol Infect 2019;21S:e6-e16. https://doi.org/10.1111/1469-0691.12291
  10. Maes P, Clement J, Gavrilovskaya I, Van Ranst M. Hantaviruses: immunology, treatment, and prevention. Viral Immunol 2004;17(4):481-497. https://doi.org/10.1089/vim.2004.17.481
  11. Yi Y, Park H, Jung J. Effectiveness of inactivated hantavirus vaccine on the disease severity of hemorrhagic fever with renal syndrome. Kidney Res Clin Pract 2018;37(4):366-372. https://doi.org/10.23876/j.krcp.18.0044
  12. Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA. Systems biology approaches to new vaccine development. Curr Opin Immunol 2011;23(3):436-443. https://doi.org/10.1016/j.coi.2011.04.005
  13. Schmaljohn CS. Vaccines for hantaviruses: progress and issues. Expert Rev Vaccines 2012;11(5):511-513. https://doi.org/10.1586/erv.12.15
  14. Poland GA, Whitaker JA, Poland CM, Ovsyannikova IG, Kennedy RB. Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 2016;17:116-125. https://doi.org/10.1016/j.coviro.2016.03.003
  15. Oh SJ, Choi YK, Shin OS. Systems biology-based platforms to accelerate research of emerging infectious diseases. Yonsei Med J 2018;59(2):176-186. https://doi.org/10.3349/ymj.2018.59.2.176
  16. Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND, Jacobson RM, et al. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol 2013;25(2):89-103. https://doi.org/10.1016/j.smim.2013.04.007
  17. Poland GA, Ovsyannikova IG, Jacobson RM, Smith DI. Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin Pharmacol Ther 2007;82(6):653-664. https://doi.org/10.1038/sj.clpt.6100415
  18. Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity 2010;33(4):516-529. https://doi.org/10.1016/j.immuni.2010.10.006
  19. De Gregorio E, Rappuoli R. Vaccines for the future: learning from human immunology. Microb Biotechnol 2012;5(2):149-155. https://doi.org/10.1111/j.1751-7915.2011.00276.x
  20. Mooney M, McWeeney S, Sekaly RP. Systems immunogenetics of vaccines. Semin Immunol 2013;25(2):124-129. https://doi.org/10.1016/j.smim.2013.06.003
  21. Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 2015;370(1671):20140146. https://doi.org/10.1098/rstb.2014.0146
  22. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 2009;10(1):116-125. https://doi.org/10.1038/ni.1688
  23. Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 2008;205(13):3119-3131. https://doi.org/10.1084/jem.20082292
  24. Ackerman ME, Barouch DH, Alter G. Systems serology for evaluation of HIV vaccine trials. Immunol Rev 2017;275(1):262-270. https://doi.org/10.1111/imr.12503
  25. Mooney M, McWeeney S, Canderan G, Sekaly RP. A systems framework for vaccine design. Curr Opin Immunol 2013;25(5):551-555. https://doi.org/10.1016/j.coi.2013.09.014
  26. Circelli L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Systems biology approach for cancer vaccine development and evaluation. Vaccines (Basel) 2015;3(3):544-555. https://doi.org/10.3390/vaccines3030544
  27. Petrizzo A, Tagliamonte M, Tornesello M, Buonaguro FM, Buonaguro L. Systems vaccinology for cancer vaccine development. Expert Rev Vaccines 2014;13(6):711-719. https://doi.org/10.1586/14760584.2014.913484
  28. Hagan T, Nakaya HI, Subramaniam S, Pulendran B. Systems vaccinology: enabling rational vaccine design with systems biological approaches. Vaccine 2015;33(40):5294-5301. https://doi.org/10.1016/j.vaccine.2015.03.072
  29. Poland GA, Ovsyannikova IG, Jacobson RM. Personalized vaccines: the emerging field of vaccinomics. Expert Opin Biol Ther 2008;8(11):1659-1667. https://doi.org/10.1517/14712598.8.11.1659

Cited by

  1. Current Challenges in Vaccinology vol.11, 2019, https://doi.org/10.3389/fimmu.2020.01181