DOI QR코드

DOI QR Code

Renal replacement therapy in neonates with an inborn error of metabolism

  • Cho, Heeyeon (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2018.10.02
  • Accepted : 2018.11.06
  • Published : 2019.02.15

Abstract

Hyperammonemia can be caused by several genetic inborn errors of metabolism including urea cycle defects, organic acidemias, fatty acid oxidation defects, and certain disorders of amino acid metabolism. High levels of ammonia are extremely neurotoxic, leading to astrocyte swelling, brain edema, coma, severe disability, and even death. Thus, emergency treatment for hyperammonemia must be initiated before a precise diagnosis is established. In neonates with hyperammonemia caused by an inborn error of metabolism, a few studies have suggested that peritoneal dialysis, intermittent hemodialysis, and continuous renal replacement therapy (RRT) are effective modalities for decreasing the plasma level of ammonia. In this review, we discuss the current literature related to the use of RRT for treating neonates with hyperammonemia caused by an inborn error of metabolism, including optimal prescriptions, prognosis, and outcomes. We also review the literature on new technologies and instrumentation for RRT in neonates.

Keywords

References

  1. Auron A, Brophy PD. Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 2012;27:207-22. https://doi.org/10.1007/s00467-011-1838-5
  2. Lanpher B, Brunetti-Pierri N, Lee B. Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet 2006;7:449-60. https://doi.org/10.1038/nrg1880
  3. Dionisi-Vici C, Rizzo C, Burlina AB, Caruso U, Sabetta G, Uziel G, et al. Inborn errors of metabolism in the Italian pediatric population: a national retrospective survey. J Pediatr 2002;140:321-7. https://doi.org/10.1067/mpd.2002.122394
  4. McBryde KD, Kudelka TL, Kershaw DB, Brophy PD, Gardner JJ, Smoyer WE. Clearance of amino acids by hemodialysis in argininosuccinate synthetase deficiency. J Pediatr 2004;144:536-40. https://doi.org/10.1016/j.jpeds.2004.01.037
  5. Summar M. Current strategies for the management of neonatal urea cycle disorders. J Pediatr 2001;138(1 Suppl):S30-9. https://doi.org/10.1067/mpd.2001.111834
  6. Haberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012;7:32. https://doi.org/10.1186/1750-1172-7-32
  7. Gortner L, Leupold D, Pohlandt F, Bartmann P. Peritoneal dialysis in the treatment of metabolic crises caused by inherited disorders of organic and amino acid metabolism. Acta Paediatr Scand 1989;78:706-11. https://doi.org/10.1111/j.1651-2227.1989.tb11130.x
  8. Arbeiter AK, Kranz B, Wingen AM, Bonzel KE, Dohna-Schwake C, Hanssler L, et al. Continuous venovenous haemodialysis (CVVHD) and continuous peritoneal dialysis (CPD) in the acute management of 21 children with inborn errors of metabolism. Nephrol Dial Transplant 2010;25:1257-65. https://doi.org/10.1093/ndt/gfp595
  9. Lai YC, Huang HP, Tsai IJ, Tsau YK. High-volume continuous venovenous hemofiltration as an effective therapy for acute management of inborn errors of metabolism in young children. Blood Purif 2007;25:303-8. https://doi.org/10.1159/000106102
  10. McBryde KD, Kershaw DB, Bunchman TE, Maxvold NJ, Mottes TA, Kudelka TL, et al. Renal replacement therapy in the treatment of confirmed or suspected inborn errors of metabolism. J Pediatr 2006;148:770-8. https://doi.org/10.1016/j.jpeds.2006.01.004
  11. Picca S, Dionisi-Vici C, Abeni D, Pastore A, Rizzo C, Orzalesi M, et al. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol 2001;16:862-7. https://doi.org/10.1007/s004670100702
  12. Kim HJ, Park SJ, Park KI, Lee JS, Eun HS, Kim JH, et al. Acute treatment of hyperammonemia by continuous renal replacement therapy in a newborn patient with ornithine transcarbamylase deficiency. Korean J Pediatr 2011;54:425-8. https://doi.org/10.3345/kjp.2011.54.10.425
  13. Spinale JM, Laskin BL, Sondheimer N, Swartz SJ, Goldstein SL. Highdose continuous renal replacement therapy for neonatal hyperammonemia. Pediatr Nephrol 2013;28:983-6. https://doi.org/10.1007/s00467-013-2441-8
  14. Hanudel M, Avasare S, Tsai E, Yadin O, Zaritsky J. A biphasic dialytic strategy for the treatment of neonatal hyperammonemia. Pediatr Nephrol 2014;29:315-20. https://doi.org/10.1007/s00467-013-2638-x
  15. Kim JY, Lee Y, Cho H. Optimal prescriptions of continuous renal replacement therapy in neonates with hyperammonemia. Blood Purif 2018;14:1-7.
  16. Pela I, Seracini D, Donati MA, Lavoratti G, Pasquini E, Materassi M. Peritoneal dialysis in neonates with inborn errors of metabolism: is it really out of date? Pediatr Nephrol 2008;23:163-8. https://doi.org/10.1007/s00467-007-0607-y
  17. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after treatment with phenylacetate and benzoate for ureacycle disorders. N Engl J Med 2007;356:2282-92. https://doi.org/10.1056/NEJMoa066596
  18. Schaefer F, Straube E, Oh J, Mehls O, Mayatepek E. Dialysis in neonates with inborn errors of metabolism. Nephrol Dial Transplant 1999;14:910-8. https://doi.org/10.1093/ndt/14.4.910
  19. Picca S, Dionisi-Vici C, Bartuli A, De Palo T, Papadia F, Montini G, et al. Short-term survival of hyperammonemic neonates treated with dialysis. Pediatr Nephrol 2015;30:839-47. https://doi.org/10.1007/s00467-014-2945-x
  20. Westrope C, Morris K, Burford D, Morrison G. Continuous hemofiltration in the control of neonatal hyperammonemia: a 10-year experince. Pediatr Nephrol 2010;25:1725-30. https://doi.org/10.1007/s00467-010-1549-3
  21. Symons JM, Brophy PD, Gregory MJ, McAfee N, Somers MJ, Bunchman TE, et al. Continuous renal replacement therapy in children up to 10 kg. Am J Kidney Dis 2003;41:984-9. https://doi.org/10.1016/S0272-6386(03)00195-1
  22. Lee ST, Cho H. Fluid overload and outcomes in neonates receiving continuous renal replacement therapy. Pediatr Nephrol 2016;31:2145-52. https://doi.org/10.1007/s00467-016-3363-z
  23. Sohn YB, Paik KH, Cho HY, Kim SJ, Park SW, Kim ES, et al. Continuous renal replacement therapy in neonates weighing less than 3 kg. Korean J Pediatr 2012;55:286-92. https://doi.org/10.3345/kjp.2012.55.8.286
  24. Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 2014;383:1807-13. https://doi.org/10.1016/S0140-6736(14)60799-6
  25. Lorenzin A, Garzotto F, Alghisi A, Neri M, Galeano D, Aresu S, et al. CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations. Pediatr Nephrol 2016;31:1659-65. https://doi.org/10.1007/s00467-016-3397-2
  26. Vidal E, Garzotto F, Parolin M, Manenti C, Zanin A, Bellettato M, et al. Therapeutic plasma exchange in neonates and infants: successful use of a miniaturized machine. Blood Purif 2017;44:100-5. https://doi.org/10.1159/000470827
  27. Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, et al. Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol 2014;29:1873-81. https://doi.org/10.1007/s00467-014-2923-3
  28. Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, et al. Smaller circuits for smaller patients: improving renal support therapy with $Aquadex^{TM}$. Pediatr Nephrol 2016;31:853-60. https://doi.org/10.1007/s00467-015-3259-3

Cited by

  1. Continuous Renal Replacement Therapy with High Flow Rate Can Effectively, Safely, and Quickly Reduce Plasma Ammonia and Leucine Levels in Children vol.6, pp.4, 2019, https://doi.org/10.3390/children6040053
  2. Management of 35 critically ill hyperammonemic neonates: Role of early administration of metabolite scavengers and continuous hemodialysis vol.27, pp.5, 2020, https://doi.org/10.1016/j.arcped.2020.05.002
  3. A retrospective review of outcomes in the treatment of hyperammonemia with renal replacement therapy due to inborn errors of metabolism vol.35, pp.9, 2019, https://doi.org/10.1007/s00467-020-04533-3
  4. Advances in Kidney Replacement Therapy in Infants vol.28, pp.1, 2019, https://doi.org/10.1053/j.ackd.2021.05.002