DOI QR코드

DOI QR Code

Antimicrobial Activities of Extracts of Camellia sinensis (L.) O. Kuntze and Profile of Antimicrobial Agents Resistance for Carbapenem-Resistant Enterobacteriaceae

  • Yum, Jong Hwa (Department of Clinical Laboratory Science, Dongeui University)
  • Received : 2019.08.20
  • Accepted : 2019.09.09
  • Published : 2019.09.30

Abstract

In vitro antimicrobial activities of hot water extracts of Camellia sinensis (L.) O. Kuntze, for carbapenem-resistant Enterobacteriaceae (CRE) were compared to commonly used conventional antimicrobial agents. CRE was not only resistant to imipenem, meropenem or ertapenem, but also to various antimicrobial agents, such as amikacin (> $128{\mu}g/mL$). The hot water extracts of Camellia sinensis (L.) O. Kuntze had the lowest MIC ($0.06{\sim}0.5{\mu}L/mL$) of the carbapenem-resistant E. coli, K. pneumoniae, and Enterobacter spp. tested, and it was possible more potent than various conventional antimicrobial agents. Synergistic combinations of the extract with used commonly antimicrobial agents might even improve its antimicrobial chemotherapy property.

Keywords

References

  1. Bandyopadhyay D, Chatterjee TK, Dasgupta A, Lourduraja J, Dastidar SG. In vitro and in vivo antimicrobial action of tea: The commonest beverage of asia. Biol Pharm Bull. 2005. 28:2125-2127. https://doi.org/10.1248/bpb.28.2125
  2. Bonine NG, Berger A, Altincatal A, Wang R, Bhagnani T, Gillard P, Lodise T. Associations between timeliness of therapy and clinical and economic outcomes among patients with serious infections due to gram-negative bacteria (GNB): how much does delayed appropriate therapy (DAT) matter? Open Forum Infect Dis. 2017. 4: S283-284.
  3. Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea - A review. J Am Coll Nutr. 2006. 25: 79-99. https://doi.org/10.1080/07315724.2006.10719518
  4. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Tests; approved standards M2-A8, 27th ed. Wayne PA: CLSI. 2017.
  5. Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Protect. 2006. 69:354-361. https://doi.org/10.4315/0362-028X-69.2.354
  6. Gulati A, Rawat R, Singh B, Ravidranath SD. Application of microwave energy in the manufacture of enhanced-quality green tea. J Agri Food Chem. 2003. 51: 4764-4768. https://doi.org/10.1021/jf026227q
  7. Ikeda I, Tsuda K, Suzuki Y, Kobayashi M, Unno T, Tomoyori H, Goto H, Kawata Y, Imaizumi K, Nozawa A, Kakuda T. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J Nutr. 2005. 135: 155-159. https://doi.org/10.1093/jn/135.2.155
  8. Kang JS, Yi J, Ko MK, Lee SO, Lee JE, Kim KH. Prevalence and Risk Factors of Carbapenem-resistant Enterobacteriaceae Acquisition in an Emergency Intensive Care Unit in a Tertiary Hospital in Korea: a Case-Control Study. J Korean Med Sci. 2019. 34: e140. https://doi.org/10.3346/jkms.2019.34.e140
  9. Kim YA, Park YS. Epidemiology and treatment of antimicrobial resistant gram-negative bacteria in Korea. Korean J Intern Med. 2018. 33: 247-255. https://doi.org/10.3904/kjim.2018.028
  10. Lee K, Ha GY, Shin BM, Kim JJ, Kang JO, Jang SJ, Yong D, Chong Y; Korean Nationwide Surveillance of Antimicrobial Resistance (KONSAR) group. Metallo-$\beta$-lactamase-producing gram-negative bacilli in Korean nationwide surveillance of antimicrobial resistance group hospitals in 2003: continued prevalence of VIM-producing Pseodomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn Microbiol Infect Dis. 2004. 50: 51-58. https://doi.org/10.1016/j.diagmicrobio.2004.05.002
  11. Loffler F, Sun Q, Li J, Tiedje JM. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol. 2000. 66: 1369-1374. https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  12. Raman G, Avendano E, Berger S, Menon V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: systematic review and meta-analysis. BMC Infect Dis. 2015. 15: 395. https://doi.org/10.1186/s12879-015-1123-5
  13. Sajilata MG, Bajaj PR, Singhal RS. Tea polyphenols as nutraceuticals. Comp Rev Food Sci Food Safety. 2008. 7: 229-254. https://doi.org/10.1111/j.1541-4337.2008.00043.x
  14. Shin S, Jeong SH, Lee H, Hong JS, Park MJ, Song W. Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum $\beta$-lactamase causing a first outbreak in Korea. Ann Clin Microbiol Antimicrob. 2018. 17: 1-6. https://doi.org/10.1186/s12941-018-0253-1
  15. Taylor PW, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bull. 2005. 2: 71-81.
  16. Tellado JM, Sen SS, Caloto MT, Kumar RN, Nocea G. Consequences of inappropriate initial empiric parenteral antibiotic therapy among patients with community-acquired intraabdominal infections in Spain. Scand J Infect Dis. 2007. 39:947-955. https://doi.org/10.1080/00365540701449377
  17. Toda M, Okubo S, Hiyoshi R, Shimamura T. The bactericidal activity of tea and coffee. Lett Appl Microbiol. 1989. 8: 123-125. https://doi.org/10.1111/j.1472-765X.1989.tb00255.x
  18. Toda M, Okubo S, Ikigai H, Shimamura T. Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives. Jap J Bacteriol. 1990. 45: 561-566. https://doi.org/10.3412/jsb.45.561
  19. Zaveri NT. Green tea and its polyphenolic catechins: Medicinal uses in cancer and non cancer applications. Life Sci. 2006. 78: 2073-2080. https://doi.org/10.1016/j.lfs.2005.12.006
  20. Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect Dis. 2017. 17: 279. https://doi.org/10.1186/s12879-017-2383-z