DOI QR코드

DOI QR Code

Nanocellulose Applications for Drug Delivery: A Review

  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Hyun-Ji (Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Jin-Chul (Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University)
  • Received : 2019.08.28
  • Accepted : 2019.09.05
  • Published : 2019.09.30

Abstract

Nanocellulose, which can exist as either cellulose nanocrystals or cellulose nanofibrils, has been used as a biomaterial for drug delivery owing to its non-immunogenicity, biocompatibility, high specific area, good mechanical properties, and variability for chemical modification. Various water-soluble drugs can be bound to and released from nanocelluloses through electrostatic interactions. The high specific surface area of nanocellulose allows for high specific drug loading. Additionally, a broad spectrum of drugs can bind to nanocellulose after facile chemical modifications of its surface. Controlled release can be achieved for various pharmaceuticals when the nanocellulose surface is chemically modified or physically formulated in an adequate manner. This review summarizes the potential applications of nanocelluloses in drug delivery according to published studies on drug delivery systems.

Keywords

References

  1. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O. 2016. Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39: 76-88. https://doi.org/10.1016/j.copbio.2016.01.002
  2. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. 2013. Liposome: classification, preparation, and applications. Nanoscale Res Lett 8: 102. https://doi.org/10.1186/1556-276X-8-102
  3. Akhlaghi SP, Berry RC, Tam KC. 2013. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20: 1747-1764. https://doi.org/10.1007/s10570-013-9954-y
  4. Almeida IF, Pereira T, Silva NHCS, Gomes FP, Silvestre AJD, Freire CSR, Sousa Lobo JM, Costa PC. 2014. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur J Pharm Biopharm 86: 332-336. https://doi.org/10.1016/j.ejpb.2013.08.008
  5. Alvarez OM, Patel M, Booker J, Markowitz L. 2004. Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: Results of a single center randomized study involving 24 patients. Wounds 16: 224-233.
  6. Amin MCIM, Abadi AG, Ahmad N, Katas H, Jamal JA. 2012. Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41: 561-568.
  7. Amin MCIM, Ahmad N, Pandey M, Xin CJ. 2014. Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Dev Ind Pharm 40: 1340-1349. https://doi.org/10.3109/03639045.2013.819882
  8. Bender J, Simonsson C, Smedh M, Engstrom S, Ericson MB. 2008. Lipid cubic phases in topical drug delivery: visualization of skin distribution using two-photon microscopy. J Control Release 129: 163-169. https://doi.org/10.1016/j.jconrel.2008.04.020
  9. Berndt S, Wesarg F, Wiegand C, Kralisch D, Muller F. 2013. Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20: 771-783. https://doi.org/10.1007/s10570-013-9870-1
  10. Bhandari J, Mishra H, Mishra PK, Wimmer R, Ahmad FJ, Talegaonkar S. 2017. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomedicine 12: 2021-2031. https://doi.org/10.2147/IJN.S124318
  11. Budai M, Szogyi M. 2001. Liposomes as drug carrier systems. Preparation, classification and therapeutic advantages of liposomes. Acta Pharm Hung 71: 114-118.
  12. Cho SM, Lee HY, Kim JC. 2008. pH-dependent release property of dioleoylphosphatidyl ethanolamine liposomes. Koeran J Chem Eng 25: 390-393. https://doi.org/10.1007/s11814-008-0066-6
  13. Czaja WK, Young DJ, Kawecki M, Brown RM Jr. 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8: 1-12. https://doi.org/10.1021/bm060620d
  14. Dai J, Kim JC. 2013. Photo responsive monoolein cubic phase containing coumarin-Tween 20 conjugates. Drug Dev Ind Pharm 39: 1457-1463. https://doi.org/10.3109/03639045.2012.728225
  15. Dash R, Ragauskas AJ. 2012. Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2: 3403-3409. https://doi.org/10.1039/c2ra01071b
  16. Diez I, Eronen P, Osterberg M, Linder MB, Ikkala O, Ras RH. 2011. Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11: 1185-1191. https://doi.org/10.1002/mabi.201100099
  17. Dong S, Cho HJ, Lee YW, Roman M. 2014. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15: 1560-1567. https://doi.org/10.1021/bm401593n
  18. Gavillon R, Budtova T. 2008. Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9: 269-277. https://doi.org/10.1021/bm700972k
  19. Gopi S, Balakrishnan P, Geethamma VG, Pius A, Thomas S. 2018. Applications of cellulose nanofibrils in drug delivery. Woodhead Publishing, Cambridge, pp 75-95.
  20. Guo H, Kim JC. 2015a. Photothermally induced release from liposome suspended in mixture solution of gold nanoparticle and thermo-sensitive polymer. Colloids Surf A Physicochem Eng Asp 469: 73-82. https://doi.org/10.1016/j.colsurfa.2015.01.010
  21. Guo H, Kim JC. 2015b. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome. Int J Pharm 494: 172-179. https://doi.org/10.1016/j.ijpharm.2015.08.034
  22. Guo H, Kim JC. 2017. pH- and cinnamic acid-triggerable dioleoylphophatidylethanolamine liposome bearing polyethyleneimine/palmitic acid mixture. J Dispers Sci Technol 38: 558-565. https://doi.org/10.1080/01932691.2016.1181554
  23. Hong YJ, Kim JC. 2010. PH- and calcium ion-dependent release from egg phosphatidylcholine liposomes incorporating hydrophobically modified alginate. J Nanosci Nanotechnol 10: 8380-8386. https://doi.org/10.1166/jnn.2010.2747
  24. Hong YJ, Lee HY, Kim JC. 2009. Alginate beads containing pH-sensitive liposomes and glucose oxidase glucose-sensitive release. Colloid Polym Sci 287: 1207-1214. https://doi.org/10.1007/s00396-009-2084-2
  25. Hong YJ, Pyo CG, Kim JC. 2010. Liposomes incorporating hydrophobically modified silk fibroin: pH-dependent release. Int J Biol Macromol 47: 635-639. https://doi.org/10.1016/j.ijbiomac.2010.08.010
  26. Hong YJ, Seo HJ, Kim JD, Shin WC, Kim JC. 2011. Eur J Lipid Sci Technol 113: 146-151. https://doi.org/10.1002/ejlt.201000458
  27. Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G. 2013. Nano-cellulose 3D-networks as controlled-release drug carriers J Mater Chem B 1: 2976-2984. https://doi.org/10.1039/c3tb20149j
  28. Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H. 2009. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10: 2714-2717. https://doi.org/10.1021/bm9006979
  29. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321-330. https://doi.org/10.2147/IJN.S16749
  30. Jo SM, Kim JC. 2009. Glucose-triggered release from liposomes incorporating poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate) and glucose oxidase. Colloid Polym Sci 287: 379-384. https://doi.org/10.1007/s00396-008-1973-0
  31. Jo SM, Lee HY, Kim JC. 2009. Glucose-sensitivity of liposomes incorporating conjugates of glucose oxidase and poly (N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate). Int J Biol Macromol 45: 421-426. https://doi.org/10.1016/j.ijbiomac.2009.06.008
  32. Jo SM, Xia Y, Lee HY, Kim YC, Kim JC. 2008. Liposomes incorporating hydrophobically modified glucose oxidase. Korean J Chem Eng 25: 1221-1225. https://doi.org/10.1007/s11814-008-0202-3
  33. Jorfi M, Foster EJ. 2015. Recent Advances in Nanocellulose for Biomedical Applications. J Appl Polym Sci 132: 41719.
  34. Kaplan E, Ince T, Yorulmaz E, Yener F, Harputlu E, Lacin NT. 2014. Controlled delivery of ampicillin and gentamycin from cellulose hydrogels and their antibacterial efficiency. J Biomater Tissue Eng 4: 543-549. https://doi.org/10.1166/jbt.2014.1198
  35. Kim JA, Kim JC. 2018. Temperature and electric field-triggerable liposomes incorporating poly(hydroxyethyl acrylate-co-hexadecyl acrylate-co-carboxyethyl acrylate). J Ind Eng Chem 62: 383-391. https://doi.org/10.1016/j.jiec.2018.01.018
  36. Kim JA, Park D, Kim JC. 2018. pH-sensitive self-assembling property of poly(ethyleneimine)/cinnamic acid mixture and its effect on pH-dependent release of monoolein cubic phase. Int J Polym Mater Polym Biomater 67: 438-444. https://doi.org/10.1080/00914037.2017.1342250
  37. Kim JC. 2015a. Hydroxyethyl acrylate-based copolymer-immobilized liposomes as UV and thermo dual-triggerable carriers. Eur J Lipid Sci Technol 117: 45-54. https://doi.org/10.1002/ejlt.201400254
  38. Kim JC. 2015b. Thermo- and UV Photo-Triggerable Monoolein Cubic Phase Bearing Poly(Hydroxyethyl Acrylate-co-Coumaryl Acrylate-co-Octadecyl Acrylate). J Dispers Sci Technol 36: 803-810. https://doi.org/10.1080/01932691.2014.924859
  39. Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J. 2012a. Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430: 47-55. https://doi.org/10.1016/j.ijpharm.2012.03.031
  40. Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J. 2011. Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech 12: 1366-1373. https://doi.org/10.1208/s12249-011-9705-z
  41. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. 2012b. Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82: 308-315. https://doi.org/10.1016/j.ejpb.2012.06.011
  42. Kwon KN, Kim JC. 2016a. Glucose-Responsive Monoolein Cubic Phase Containing Glucose Oxidase. J Dispers Sci Technol 37: 1518-1525. https://doi.org/10.1080/01932691.2015.1092089
  43. Kwon KN, Kim JC. 2016b. Redox-responsive alginate microsphere containing cystamine. J Biomater Sci Polym Ed 27: 1520-1533. https://doi.org/10.1080/09205063.2016.1215800
  44. Kwon KN, Kim JC. 2017. Preparation of liposome bearing disulfide proteinoid and its reduction-responsive release property. J Biomater Sci Polym Ed 28: 1365-1381. https://doi.org/10.1080/09205063.2017.1328729
  45. Kwon KN, Kim JC. 2018. Monoolein cubic phase containing disulfide proteinoid and its reduction-responsive release property. J Dispers Sci Technol 39: 614-622. https://doi.org/10.1080/01932691.2017.1370675
  46. Kwon TK, Kim JC. 2011a. Monoolein cubic phase containing acidic proteinoid: pH-dependent release. Drug Dev Ind Pharm 37: 56-61. https://doi.org/10.3109/03639045.2010.491830
  47. Kwon TK, Kim JC. 2011b. pH-Dependent Release from Monoolein Cubic Phase Containing Hydrophobically Modified Chitosan. J Dispers Sci Technol 32: 480-484. https://doi.org/10.1080/01932691003756761
  48. Lee MS, Kim JC. 2014. Photo-responsive monoolein cubic phase incorporating hydrophobically modified poly(vinyl alcohol)-coumarin conjugate. Polym Eng Sci 54: 227-233. https://doi.org/10.1002/pen.23513
  49. Liebner F, Haimer E, Wendland M, Neouze MA, Schufter K, Miethe P, Heinze T, Potthast A. Rosenau T. 2010. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol Biosci 10: 349-352. https://doi.org/10.1002/mabi.200900371
  50. Lin N, Dufresne A. 2013. Supramolecular Hydrogels from In Situ Host-Guest Inclusion between Chemically Modified Cellulose Nanocrystals and Cyclodextrin. Biomacromolecules 14: 871-880. https://doi.org/10.1021/bm301955k
  51. Lin N, Dufresne A. 2014. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59: 302-325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  52. Lobmann K, Svagan AJ. 2017. Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. Int J Pharm 533: 285-297. https://doi.org/10.1016/j.ijpharm.2017.09.064
  53. Muller A, Ni Z, Hessler N, Wesarg F, Muller FA, Kralisch D, Fischer D. 2013. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102: 579-592. https://doi.org/10.1002/jps.23385
  54. Nakano YA, Li SJ, Yamazaki M. 1999. Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. Biochim Biophys Acta (BBA)-Biomembr 1461: 96-102. https://doi.org/10.1016/S0005-2736(99)00156-X
  55. Park D, Kim JC. 2017. UV light and thermo-sensitive disassembling and release property of the assembly of cinnamic acid and poly(ethyleneimine). Soft Mater 15: 282-291. https://doi.org/10.1080/1539445X.2017.1355815
  56. Park D, Kim JC. 2019. Monoolein cubic phases containing cinnamic acid, poly(ethyleneimine) and gold nanoparticle and their UV- and NIR-responsive release property. Int J Pharm 554: 420-428. https://doi.org/10.1016/j.ijpharm.2018.06.044
  57. Park SH, Zhang H, Kim JC. 2018. Monoolein cubic phase containing azobenzene and its UV/visible light irradiation-dependent release property. J Dispers Sci Technol 39: 460-467. https://doi.org/10.1080/01932691.2017.1326311
  58. Pavaloiu RD, Stoica-Guzun A, Dobre T. 2015. Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. U P B Sci Bull, Series B 77: 53-62.
  59. Plackett D, Letchford K, Jackson JK, Burt HM. 2014. A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Paper Res J 29: 105-118. https://doi.org/10.3183/npprj-2014-29-01-p105-118
  60. Qiu X, Hu S. 2013. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials (Basel) 6: 738-781. https://doi.org/10.3390/ma6030738
  61. Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW. 2014. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6: 6127-6138. https://doi.org/10.1021/am500359f
  62. Seddon AM, Hallett J, Beddoes C, Plivelic TS, Squires AM. 2014. Experimental confirmation of transformation pathways between inverse double diamond and gyroid cubic phases. Langmuir 30: 5705-5710. https://doi.org/10.1021/la5005837
  63. Seo HJ, Cha HJ, Kim TS, Kim JC. 2013. Photo-responsive liposomes decorated with hydrophobically modified poly(vinyl alcohol)-coumarin conjugate. J Ind Eng Chem 19: 310-315. https://doi.org/10.1016/j.jiec.2012.08.017
  64. Seo HJ, Kim JC. 2011. Characteristics and photo-responsive release property of liposome containing 7-acetoxy coumarin. J Nanosci Nanotechnol 11: 10262-10270. https://doi.org/10.1166/jnn.2011.4996
  65. Seo HJ, Kim JC. 2012. Light-Sensitive Liposomes Containing Coumarin-Proteinoid Conjugate. J Nanosci Nanotechnol 12: 4044-4050. https://doi.org/10.1166/jnn.2012.5856
  66. Seo HJ, Kim JC. 2013. Liposomes Composed of Dioleoylphosphatidylethanolamine and 2-(Hexadecyloxy)Cinnamic Acid: Effects of UV Irradiation and pH Value on Release. J Nanosci Nanotechnol 13: 1727-1732. https://doi.org/10.1166/jnn.2013.7128
  67. Shah JC, Sadhale Y, Chilukuri DM. 2001. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47: 229-250. https://doi.org/10.1016/S0169-409X(01)00108-9
  68. Shanmuganathan K, Capadona J, Rowan SJ, Weder C. 2010. Biomimetic mechanically adaptive nanocomposites. Prog Polym Sci 35: 212-222. https://doi.org/10.1016/j.progpolymsci.2009.10.005
  69. Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E. 2007. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Methods Phys Res B: Beam Interac Mater Atoms 265: 434-438. https://doi.org/10.1016/j.nimb.2007.09.036
  70. Sulaeva I, Henniges U, Rosenau T, Potthast A. 2015. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv 33: 1547-1571. https://doi.org/10.1016/j.biotechadv.2015.07.009
  71. Utsel S, Malmstrom E, Carlmark A, Wagberg L. 2010. Thermoresponsive nanocomposites from multilayers of nanofibrillated cellulose and specially designed N-isopropylacrylamide based polymers. Soft Matter 6: 342-352. https://doi.org/10.1039/B910481J
  72. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T. 2013. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50: 69-77. https://doi.org/10.1016/j.ejps.2013.02.023
  73. Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T. 2011. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices--enhanced stability and release. J Control Release 156: 390-397. https://doi.org/10.1016/j.jconrel.2011.07.016
  74. Varjonen S, Laaksonen P, Paananen A, Valo H, Haehl H, Laaksonen T, Linder MB. 2011. Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins. Soft Matter 7: 2402-2411. https://doi.org/10.1039/c0sm01114b
  75. Wang H, Roman M. 2011. Formation and Properties of Chitosan -Cellulose Nanocrystal Polyelectrolyte-Macroion Complexes for Drug Delivery Applications. Biomacromolecules 12: 1585-1593. https://doi.org/10.1021/bm101584c
  76. Wang MH, Jeong JH, Kim JC. 2016. Thermo-triggerable self-assembly comprising cinnamoyl polymeric ${\beta}$ cyclodextrin and cinnamoyl Pluronic F127. Colloids Surf B Biointerfaces 142: 148-158. https://doi.org/10.1016/j.colsurfb.2016.02.048
  77. Wang MH, Kim JC. 2014. Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127. Int J Pharm 468: 243-249. https://doi.org/10.1016/j.ijpharm.2014.04.014
  78. Wei B, Yang G, Hong F. 2011. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84: 533-538. https://doi.org/10.1016/j.carbpol.2010.12.017
  79. Wen X, Zheng Y, Wu J, Yue L, Wang C, Luan J, Wu Z, Wang K. 2015. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing. Prog Nat Sci Mater Int 25: 197-203. https://doi.org/10.1016/j.pnsc.2015.05.004
  80. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP. 2013. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl Mater Interfaces 5: 2999-3009. https://doi.org/10.1021/am302624t
  81. Yoon DY, Kim JC. 2016. Hydrophobically modified poly(vinyl alcohol) and boric acid-containing monoolein cubic phase as a glucose-responsive vehicle. Colloids Surf A Physicochem Eng Asp 506: 678-685. https://doi.org/10.1016/j.colsurfa.2016.07.045
  82. Zhang H, Kim JC. 2015a. Effect of cinnamic acid on phase transition and pH-dependent release property of monoolein cubic phase. J Ind Eng Chem 32: 319-326. https://doi.org/10.1016/j.jiec.2015.09.014
  83. Zhang H, Kim JC. 2015b. Preparation and photothermal induced release from cubic phase containing gold nanoparticle. Colloids Surf A Physicochem Eng Asp 465: 59-66. https://doi.org/10.1016/j.colsurfa.2014.10.013
  84. Zhang H, Kim JC. 2016a. Concentration and temperature-sensitive assembling behavior of polyethyleneimine-cinnamic acid conjugate and its release-controlling property in monoolein cubic phase. J Ind Eng Chem 36: 215-223. https://doi.org/10.1016/j.jiec.2016.02.003
  85. Zhang H, Kim JC. 2016b. Reduction-responsive monoolein cubic phase containing hydrophobically modified poly(ethylene imine) and dithiodipropionic acid. Colloids Surf A Physicochem Eng Asp 506: 526-534. https://doi.org/10.1016/j.colsurfa.2016.07.007
  86. Zhou Q, Malm E, Nilsson H, Larsson PT, Iversen T, Berglund LA, Bulone V. 2009. Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5: 4124-4130. https://doi.org/10.1039/b907838j