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Most of the data envelopment analysis (DEA) models evaluate the relative efficiency of a decision making unit (DMU) based 
on the assumption that inputs in a specific period are consumed to produce the output in the same period of time. However, 
there may be some time lag between the consumption of input resources and the production of outputs. A few models to handle 
the concept of the time lag effect have been proposed. This paper suggests a new multi-period input DEA model considering 
the consistent time lag effects. Consistency of time lag effect means that the time delay for the same input factor or output 
factor are consistent throughout the periods. It is more realistic than the time lag effect for the same output or input factor 
can vary over the periods. The suggested model is an output-oriented model in order to adopt the consistent time lag effect. 
We analyze the results of the suggested model and the existing multi period input model with a sample data set from a long-term 
national research and development program in Korea. We show that the suggested model may have the better discrimination 
power than existing model while the ranking of DMUs is not different by two nonparametric tests.
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1. Introduction1)

Data envelopment analysis (DEA) presented by Charnes, 
Cooper, and Rhodes [3, 5] is a methodology to evaluate the 
performance of decision-making units (DMUs) by measuring 
the relative efficiency based on inputs and outputs of DMUs 
in a specific time period. There are various extensions of the 
original CCR model [7, 8, 12]. In particular, Banker et al. 
[2] suggested the BCC model to exhibit variable returns to 
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scale. Many other models have been proposed to handle catego-
rical input-output variables [1], weight restrictions [13] and 
ordinal input/output variables [7]. Beyond classifying DMUs 
into efficient and inefficient groups, researches for ranking 
DMUs in the DEA context has also been performed [4, 8, 9].

Generally, DEA models assumed that inputs in a specific 
period contribute to produce outputs in the same period. 
However, this assumption may not be valid in some fields 
like research and development (R&D) activity, marketing ac-
tivity, or educational activity. That is, in some situations, 
a certain length of production lead time is required to pro-
duce outputs after the consumption of inputs. This kind of 
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production lead time can be thought of as a time lag between 
the consumption of inputs and the production of outputs. In 
order to evaluate the efficiency under the time lag effects, 
Özpeynirci and Kökslan [11] developed a multi-period input 
model to calculate efficiency values of DMUs under the as-
sumption of outputs of a period are the results of the inputs 
in previous periods prior to the specific output period. From 
another point of view, we can consider the situation such 
that inputs for a specific period can contribute to the outputs 
in several subsequent periods. From the point of view, Zhang 
and Jeong [15] suggested another time lag model, the multi- 
period output model. 

The magnitude of time lag effect is expressed as the time 
lag weight of the models and the weights are determined 
to maximize the efficiency score of the DMUs respectively. 
As a result, the time lag effects for the same output or input 
factor can vary over the periods. But, it is more realistic 
for the magnitude of a time lag effect to be consistent for 
the same input or output factors, regardless of measuring 
period. To overcome the inconsistent time lag effects, Lee, 
Zhang and Jeong [10] developed a DEA model with consistent 
time lag effect by modifying the multi-period output model. 

The inconsistency problem of time lag effects also exists 
in multi-period input model. Zhang [14] suggested the basic 
idea for a multi-period input model to consider consistent 
time lag effect even though it has some remained question. 
So, this paper tackled the question remained and suggest a 
modified version of the multi-period input model to handle 
the consistency of the time lag weight over different periods. 
The suggested model has the same time lag weight through-
out the measured periods for each output factor.

In the next section, we briefly describe the existing time 
lag models and the consistent time lag model. Section 3 ex-
plains the conceptual difference between the multi-period input 
model and the consistent time lag model. A modified multi-pe-
riod input model with a consistent time lag constraint will 
be given. In Section 4, we give a comparative analysis of 
the existing multi-period input model and the proposed model 
on a data set from a long-term R&D program in Korea.

2. Existing Time Lag Models and 
Consistent Time Lag Model

Let xijt and yrjt denote the amount of input i and the amount 
of output r produced by DMU j in the period t, for i = 

1, …, m, r = 1, …, s, j=1, …, n, respectively. Özpeynirci 
and Kökslan [11] proposed the following multi-period input 
model under the assumption that the output of a certain time 
period is produced by consumption of inputs in the current 
and several previous periods. 
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In (MpI), weight  represents the weight of output r 
of DMU j in period t, and weight   denotes the weight 
of input i consumed by DMU j in the pth previous period 
from period t. Then the weight   reflects the time lag effect 
of the input i in the pth previous period to the output r in 
period t. PM denotes the length of the periods in which the 
time lag effect is reflected.

Zhang and Jeong [15] developed the following (MpO) 
model from the viewpoint that input resources consumed in 
a specific period partially contribute to outputs produced in 
the following subsequent periods. That is, the efficiency 
score of the input in period t for DMU j can be measured 
by dividing the weighted sum of outputs produced during 
periods t, t+1, … t+PM by the weighted input for period t. 
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 is the weight of input i of DMU j in period t and  

  is the weight of the output r of DMU j in period t+p. 

That is,   is the weight the DMU j assigns to the output 
r produced in the pth following period after period t. the ob-
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<Figure 1> Weights for Inconsistent Time Lag Effects of(MpI)

<Figure 2> Weights for the Consistent Time Lag Effects(MpI-C)

jective function is to maximize the total efficiency of all 
DMUs over period t to t-PM.

Lee et al. [10] suggested another multi-period output model 
(MpO-C) to consider a consistent time lag effects by the 
same time lag weights through the periods. The model is 
a new version of the multi-period output model whereby each 
output factor has the same time lag weight throughout the 
measurement periods.  
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Note that (MpO-C) is a model for a DMU k and (MpI) 
and (MpO) also can be decomposed to smaller models for 
each DMU. In (MpO-C)   denote the weight of input i 
of the DMU in period t and  is the weight of the output 
r of pth following period after a certain period. Differ from 
(MpO), (MpO-C) has the same weights for the partial con-
tribution to outputs in the following periods from input in 
a certain period. In the next section, we will see the con-
sistent time lag effects in detail. 

3. Multi-Period Input Model with a
Consistent Time Lag Effect

3.1 Consistent Time Lag Effect

(MpI) assumes that the outputs in a period are produced 
by the consumption of the inputs in multiple previous 
periods. In the model,   is a weight value representing 
the contribution of input i consumed in period t-p to outputs 
in period t for DMU j. <Figure 1> shows how the time lag 
weights in (MpI) reflect the time lag effects when PM = 
2. Consider the output in periods 3. The output in period 
3 is the results of partial contributions of the inputs from 
periods 1 to 3.  ,   and   are the weights representing 
the time lag effects of period 1 to 3 for input i. Similarly, 
the output in period 4 is the result of the partial contributions 

of the inputs from periods 2 to 4 and  ,  , and   
represent the time lag effects. The weights for period 3 and 
4 are determined independently. Thus, outputs of periods 3 
and 4 can have different time lag weights for the same input 
despite having the same time lag periods. In other words,  

 ,  , and   and  ,  , and   can have different 

values even though they represents the time lag effects for 
the same input under the same time lag periods. However, 
it is more reasonable that the time lag effect for an input 
is constant regardless of the period if the length of time lag 
periods is the same. That is, we can assume that   =  


 

       in <Figure 1> for the more reasonable 
consistent time lag effects.

<Figure 2> shows the weights for the consistent time lag 
effects. In the figure, the time lag effects from the inputs 
of periods 1 to 3 on the output of period 3, and the time 
lag effects from the inputs of periods 2 to 4 on the output 
of period 4 are the same for each time lag period p. The 
model based on the consistent time lag effects will be de-
scribed in the next subsection.

3.2 Multi-Period Input Model with a Consistent 

Time Lag

(MpI) can be modified by replacing the time lag weights 
with the time lag weights in <Figure 2>. The new time lag 
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<Table 1> Sample Input and Output Data of a Project

Year

Input factors Output factors

Fund
Researchers Papers Patents

PhD MSc BSc SCI Non-SCI Appl. Reg.

1 300 0 10 13 0 0 2 0
2 300 0 9 12 0 1 3 2
3 300 4 12 6 3 3 4 0
4 150 5 5 2 3 0 2 0
5 180 5 5 2 2 2 5 3
6 180 5 5 2 8 7 8 0
7 180 3 0 6 1 0 6 4
8 180 3 0 3 5 0 3 6
9 180 0 3 5 2 0 9 2
10 180 0 2 4 9 0 5 2

weights force the time lag effect to be consistent. The follow-
ing (MpI-C0) is a model to find the efficiency of DMU 0, 
under the consistent time lag effect.

(MpI-C0)

Max 
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Note that (MpI) has independent time lag weights for each 
DMU in each measuring period. Thus, (MpI) can be decom-
posed into smaller models for each DMU and period. But, 
(MpI-C0) cannot be decomposed by the measuring period 
because the weight for the consistent time lag effects. 

Unfortunately, (MpI-C0) might have a feasibility problem 

in some cases. In the model, the linear system 





  




  

  consists of   variables and T-PM 
equations. When   < T-PM, the linear system is 
over determined and then the system may have no solution.

Because of this feasibility problem, we need another ap-
proach to establish a new model to obtain efficiency values 
under the consistent time lag effect. The output-oriented model 
can be a useful approach to cope with the similar feasibility 
problem in DEA model [3]. The input-oriented approach is 
to maximize the weighted output given the weighted input, 
whereas the output-oriented approach is to minimize the 
weighted input given the weighted output. To make an output- 
oriented form of the multi-period input model with a consistent 
time lag effect, a reciprocal of efficiency qjt. That is, the 
weighted input is minimized to maximize efficiency under 
the constraints setting the weighted output to 1. 

(OMpI-C0)
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Different from the input-oriented model, the above model 
is free from the feasibility problem, unless all output factors 
are zero for any period t = PM +1,…,T. If a DMU has zero 
values for all output factors in a specific period, the effi-
ciency of the DMU in that period should be zero, because 
the DMU produced no output in the period. Thus, we just 
exclude such periods for each DMU from the model.

4. Case Example 

Lee et al. [10] used data on long-term national R&D 
programs. The data set consists of input and output data from 
a research center supported by a long-term national R&D 
program of the Korean government. The research center had 
17 projects, and each project (DMU) had been supported 
financially for 10 years. There are four input factors and 
four output factors in the data set. The input factors are re-
search fund (in millions of Korean won) and the number 
of PhD, MSc, and BSc researchers. The output factors are 
the number of published papers (SCI journals and non-SCI 
journals) and the number of applied and registered patents. 
<Table 1> shows sample input and output data from a project. 
We applied (MpI) and (OMpI-C) to the same data for the 
performance evaluation of the 17 projects under the consistent 
time lag effects with three different time lag periods, PM 
= 2, 3, and 4.

The efficiency scores from each models when PM = 4 
are shown in <Table 2>. In the results of the (MpI), the 
efficiency score of DMU A is 1 in all periods. In other words, 
DMU A is efficient in all periods. On the other hand, DMU 
A is not efficient in period 8 according to the efficiency 
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<Table 2> Efficiency Values Obtained by (MpI) and (OMpI-C) when PM = 4

Model DMU
Periods

Model DMU
Periods

5 6 7 8 9 10 5 6 7 8 9 10

(MpI)

A 1.000 1.000 1.000 1.000 1.000 1.000

(OMpI-C)

A 1.000 1.000 1.000 0.998 1.000 1.000

B 0.526 1.000 1.000 0.945 1.000 1.000 B 0.219 0.478 0.448 0.448 0.437 0.437

C 1.000 1.000 1.000 0.998 1.000 1.000 C 0.401 0.388 0.289 0.509 0.259 0.383

D 1.000 0.950 1.000 1.000 1.000 1.000 D 0.859 0.859 0.589 0.573 0.656 0.872

E 0.437 0.698 0.451 1.000 1.000 1.000 E 0.238 0.238 0.418 0.397 0.397 0.397

F 1.000 0.982 1.000 0.682 1.000 1.000 F 0.694 0.576 0.612 0.605 0.717 0.738

G 1.000 1.000 1.000 1.000 1.000 1.000 G 0.567 0.786 0.806 0.989 0.796 0.793

H 1.000 1.000 1.000 1.000 1.000 1.000 H 0.509 0.509 0.504 0.966 0.876 0.801

I 1.000 1.000 1.000 1.000 1.000 0.836 I 0.799 0.528 0.531 0.785 0.785 0.789

J 1.000 1.000 0.716 1.000 1.000 1.000 J 0.922 1.000 0.643 0.918 0.955 0.661

K 1.000 1.000 1.000 0.997 0.508 1.000 K 1.000 1.000 0.504 0.260 0.259 0.359

L 1.000 0.231 0.769 0.889 0.750 0.246 L 0.227 0.227 0.177 0.155 0.151 0.127

M 1.000 1.000 1.000 0.666 1.000 1.000 M 0.223 0.346 0.346 0.327 0.204 0.999

N 1.000 0.457 1.000 1.000 1.000 1.000 N 0.529 0.422 0.422 0.465 0.450 0.482

O 1.000 1.000 0.469 0.572 0.560 0.551 O 0.535 0.460 0.420 0.297 0.296 0.314

P 1.000 0.523 0.806 0.611 0.459 0.436 P 0.349 0.349 0.223 0.183 0.185 0.259

Q 1.000 1.000 1.000 1.000 1.000 1.000 Q 0.643 0.643 0.643 1.000 1.000 1.000

<Table 3> The Averages and Ranges of Efficiency Values

PM Model
Periods

3 4 5 6 7 8 9 10

2

(MpI)
Avg 0.772 0.646 0.935 0.780 0.850 0.891 0.868 0.780

Range 1.000 1.000 0.566 0.839 0.667 0.432 0.541 0.754

(OMpI-C)
Avg 0.391 0.390 0.458 0.445 0.429 0.388 0.398 0.416

Range 0.881 1.000 0.877 0.882 0.729 0.725 0.887 0.715

3

(MpI)
Avg 0.647 0.935 0.869 0.850 0.894 0.899 0.788

Range 1.000 0.566 0.769 0.667 0.428 0.541 0.754

(OMpI-C)
Avg 0.423 0.508 0.552 0.509 0.484 0.412 0.478

Range 1.000 0.793 0.793 0.849 0.780 0.875 0.904

4

(MpI)
Avg 0.939 0.873 0.895 0.904 0.899 0.886

Range 0.563 0.769 0.549 0.428 0.541 0.754

(OMpI-C)
Avg 0.571 0.577 0.504 0.581 0.554 0.612

Range 0.781 0.773 0.823 0.845 0.849 0.873

scores obtained from the proposed (OMpI-C). Let us consider 
efficiency values in period 5. All DMUs except DMU B 
and E are efficient, according to the (MpI) whereas only 
DMU A and K are efficient by (OMpI-C). Similarly, the 
number of efficient DMUs by (OMpI-C) is smaller than the 
number by (MpI) throughout periods. It’s natural because 
the time leg weights are more restricted under the consistent 
time lag effects.

<Table 3> shows the average and range of 17 DMU’s 
efficiency scores for each period by the two models. For 
all PM periods, average values obtained by the (MpI) are 
larger than the values by the (OMpI-C). On the other hand, 
the ranges of efficiency obtained by the (MpI) are smaller 
than the values obtained by the (OMpI-C). Thus, we may 
conclude that (OMpI-C) can discriminate DMUs better than 
(MpI) based on the efficiency scores. 
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<Table 4> Summary of the Dependency Test between Ranks 

Under the Two Models

Period
Spearman’s 

Kendall’s  rank 
correlation

PM = 2 PM = 3 PM = 4 PM = 2 PM = 3 PM = 4

3 ** N/A N/A ** N/A N/A
4 *** *** N/A *** *** N/A
5 ** ** * * ** *
6 *** ** *** *
7 ** *** * *** *
8 * *** *** * *** ***
9 *** *** *** *** *** ***
10 * *** ** ***

*, **, *** indicate that H0 can be rejected at 95%, 97.5%, and 
99% significance levels, respectively.

We can rank the DMU’s by the efficiency scores in each 
period. The ranking of efficient DMU is 1. Though (OMpI-C) 
has better to discriminate DMU’s than (MpI), the rankings of 
DMU’s obtained from two models may not different in stoc-
hastically. Thus, we did two nonparametric test, Spearman’s 
test and Kendall’s rank correlation test [6] to see whether 
the rankings obtained from the two models are different or 
not. The null hypothesis (H0) of the tests is that the ranking 
obtained by the (MpI) and (OMpI-C) models are independent 
to each other. The test results on rank dependency are summar-
ized in <Table 4>. The results show that H0 can be rejected 
in both tests for most of the periods except one period for 
each time lag period PM. By Spearman’s  test, the null 
hypothesis H0 cannot be rejected only for period 10 when 
PM = 2, period 6 when PM = 3, and period 7 when PM = 4. 
By Kendall’s rank correlation test, H0 cannot be rejected only 
for period 10 when PM = 2 and period 6 when PM = 3. 
Thus, we can conclude that the ranking of DMU’s by the 
suggested consistent time lag model (OMpI-C) is not different 
to the ranking by (MpI) though efficiency scores are different. 

In conclusion, the efficiency values show that the proposed 
(OMpI-C) is better than (MpI) to discriminate efficient 
DMUs. However, the results of the two rank tests indicate 
that there is no significant difference in the ranking of DMUs 
from the two models.

5. Conclusion

In this, paper, we proposed a variation of a multi-period 
input model to evaluate the efficiency of DMUs considering 

the consistent time lag effects. The suggested model is an 
output-oriented model in order to adopt the consistent time 
lag effect in the multi-period input model. There are two 
underlying assumptions for calculating the efficiency scores 
of DMUs by the suggested model. The first one is that the 
outputs of a specific period are the results of partial con-
tributions of inputs consumed in multiple preceding periods. 
The second one is that the time lag effect of each input factor 
is consistent throughout the entire evaluation period, regard-
less of the output period. A sample data set from a long-term 
Korean R&D program was used to investigate the character-
istics of the suggested model. Two nonparametric tests were 
performed to compare the rankings obtained by the suggested 
model and an existing multi-period input model (MpI). As 
expected, the suggested model (OMpI-C) has better discrimi-
nation power than (MpI). Furthermore, the rankings of DMUs 
by (OMpI-C) and (MpI) are not significantly different. Thus, 
the suggested model (OMpI-C) considers more realistic time 
lag effect and has desirable properties for performance evalu-
ation under the time lag effects. 

The consistent pattern of time lag effects in R&D program 
data is dependent on the research domain. The domain-spe-
cific pattern of time lag effects can be used in future research 
in order to improve the suggested model. It is known that 
the input oriented and the output oriented CCR models for 
a single period give the same results. The theoretical analysis 
for the relation between multi-period input model and mul-
ti-period output model and the comparison of the results from 
the two models could be another future research.
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