DOI QR코드

DOI QR Code

Complete genome sequence of Comamonas sp. NLF-7-7 isolated from biofilter of wastewater treatment plant

폐수처리장의 바이오 필터로부터 분리된 Comamonas sp. NLF-7-7 균주의 유전체 염기서열 해독

  • Kim, Dong-Hyun (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Han, Kook-Il (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwon, Hae Jun (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Kim, Mi Gyeong (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Kim, Young Guk (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Choi, Doo Ho (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Lee, Keun Chul (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Suh, Min Kuk (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Han Sol (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Jung-Sook (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jong-Guk (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2019.08.27
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

Comamonas sp. NLF-7-7 was isolated from biofilter of wastewater treatment plant. The whole-genome sequence of Comamonas sp. NLF-7-7 was analyzed using the PacBio RS II and Illumina HiSeqXten platform. The genome comprises a 3,333,437 bp chromosome with a G + C content of 68.04%, 3,197 total genes, 9 rRNA genes, and 49 tRNA genes. This genome contained pollutants degradation and floc forming genes such as sulfur oxidization pathway (SoxY, SoxZ, SoxA, and SoxB) and floc forming pathway (EpsG, EpsE, EpsF, EpsG, EpsL, and glycosyltransferase), respectively. The Comamonas sp. NLF-7-7 can be used to the purification of wastewater.

본 연구에서는 폐수처리장의 바이오필터로부터 Comamonas sp. NLF-7-7 균주를 분리하고 유전체서열을 PacBio RS II와 Illumina HiSeqXten 플랫폼을 사용하여 분석하였다. 염색체의 크기는 3,333,437 bp로 G + C 구성 비율은 68.04%, 총 유전자수는 3,197개, rRNA는 9개 및 tRNA는 49개로 구성되었다. 본 유전체는 오염물질분해와 플록형성에 관여하는 황산화 경로 유전자(SoxY, SoxZ, SoxA 및 SoxB)와 플록형성 경로 유전자(EpsG, EpsE, EpsF, EpsG, EpsL 및 glycosyltransferase)를 포함하고 있다. 이러한 Comamonas sp. NLF-7-7 균주는 폐수를 정화하는데 활용될 수 있다.

Keywords

References

  1. Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ, and Sa TM. 2008. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res. Microbiol. 159, 579-589. https://doi.org/10.1016/j.resmic.2008.08.007
  2. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, and Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421. https://doi.org/10.1186/1471-2105-10-421
  3. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  4. De Vos P, Kersters K, Falsen E, Pot B, Gillis M, Segers P, and De Ley J. 1985. Comamonas Davis and Park 1962, gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962, sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35, 443-453. https://doi.org/10.1099/00207713-35-4-443
  5. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286-293. https://doi.org/10.1093/nar/gkv1248
  6. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240. https://doi.org/10.1093/bioinformatics/btu031
  7. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, and Marra MA. 2009. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. https://doi.org/10.1101/gr.092759.109
  8. Petri R, Podgorsek L, and Imhoff JF. 2001. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol. Lett. 197, 171-178. https://doi.org/10.1111/j.1574-6968.2001.tb10600.x
  9. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  10. Stingele F, Newell JW, and Neeser JR. 1999. Unraveling the function of glycosyltransferases in Streptococcus thermophilus Sfi6. J. Bacteriol. 181, 6354-6360. https://doi.org/10.1128/JB.181.20.6354-6360.1999
  11. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. https://doi.org/10.1371/journal.pone.0112963
  12. Wani A, Branion R, and Lau AK. 1997. Biofiltration: A promising and cost-effective control technology for Odors, VOCs and air toxics. J. Ferment. Technol. 64, 161-167. https://doi.org/10.1016/0385-6380(86)90011-7

Cited by

  1. Effects of Co-culture on Improved Productivity and Bioresource for Microalgal Biomass Using the Floc-Forming Bacteria Melaminivora Jejuensis vol.8, 2019, https://doi.org/10.3389/fbioe.2020.588210
  2. Comamonas flocculans sp. nov., a Floc-Forming Bacterium Isolated from Livestock Wastewater vol.77, pp.8, 2019, https://doi.org/10.1007/s00284-020-01940-5
  3. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation vol.12, 2019, https://doi.org/10.3389/fmicb.2021.721365