DOI QR코드

DOI QR Code

Stem cell therapy in pain medicine

  • Han, Yong Hee (Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine) ;
  • Kim, Kyung Hoon (Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine) ;
  • Abdi, Salahadin (Division of Anesthesia and Critical Care, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center) ;
  • Kim, Tae Kyun (Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine)
  • Received : 2019.09.09
  • Accepted : 2019.09.17
  • Published : 2019.10.01

Abstract

Stem cells are attracting attention as a key element in future medicine, satisfying the desire to live a healthier life with the possibility that they can regenerate tissue damaged or degenerated by disease or aging. Stem cells are defined as undifferentiated cells that have the ability to replicate and differentiate themselves into various tissues cells. Stem cells, commonly encountered in clinical or preclinical stages, are largely classified into embryonic, adult, and induced pluripotent stem cells. Recently, stem cell transplantation has been frequently applied to the treatment of pain as an alternative or promising approach for the treatment of severe osteoarthritis, neuropathic pain, and intractable musculoskeletal pain which do not respond to conventional medicine. The main idea of applying stem cells to neuropathic pain is based on the ability of stem cells to release neurotrophic factors, along with providing a cellular source for replacing the injured neural cells, making them ideal candidates for modulating and possibly reversing intractable neuropathic pain. Even though various differentiation capacities of stem cells are reported, there is not enough knowledge and technique to control the differentiation into desired tissues in vivo. Even though the use of stem cells is still in the very early stages of clinical use and raises complicated ethical problems, the future of stem cells therapies is very bright with the help of accumulating evidence and technology.

Keywords

References

  1. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257: 491-6. https://doi.org/10.1056/NEJM195709122571102
  2. Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12: 85. https://doi.org/10.1186/s13024-017-0227-3
  3. Cacione DG, do Carmo Novaes F, Moreno DH. Stem cell therapy for treatment of thromboangiitis obliterans (Buerger's disease). Cochrane Database Syst Rev 2018; 10: CD012794.
  4. Venkatesh K, Sen D. Mesenchymal stem cells as a source of dopaminergic neurons: a potential cell based therapy for parkinson's disease. Curr Stem Cell Res Ther 2017; 12: 326-47. https://doi.org/10.2174/1574888X12666161114122059
  5. Ichim TE, Solano F, Lara F, Paris E, Ugalde F, Rodriguez JP, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 2010; 3: 30. https://doi.org/10.1186/1755-7682-3-30
  6. Pers YM, Ruiz M, Noel D, Jorgensen C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthritis Cartilage 2015; 23: 2027-35. https://doi.org/10.1016/j.joca.2015.07.004
  7. Chakravarthy K, Chen Y, He C, Christo PJ. Stem cell therapy for chronic pain management: review of uses, advances, and adverse effects. Pain Physician 2017; 20: 293-305. https://doi.org/10.36076/ppj.2017.305
  8. Hosseini M, Yousefifard M, Aziznejad H, Nasirinezhad F. The effect of bone marrow-derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol Blood Marrow Transplant 2015; 21: 1537-44. https://doi.org/10.1016/j.bbmt.2015.05.008
  9. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997; 88: 287-98. https://doi.org/10.1016/S0092-8674(00)81867-X
  10. Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem-cell fate. Blood 2008; 111: 492-503. https://doi.org/10.1182/blood-2007-07-075168
  11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-7. https://doi.org/10.1126/science.282.5391.1145
  12. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229-34. https://doi.org/10.1038/81326
  13. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7: 430-6. https://doi.org/10.1038/86498
  14. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76. https://doi.org/10.1016/j.cell.2006.07.024
  15. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32: 252-60. https://doi.org/10.1038/nbt.2816
  16. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485-9. https://doi.org/10.1080/14653240310003611
  17. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10: 68. https://doi.org/10.1186/s13287-019-1165-5
  18. Chagastelles PC, Nardi NB. Biology of stem cells: an overview. Kidney Int Suppl (2011) 2011; 1: 63-7. https://doi.org/10.1038/kisup.2011.15
  19. Oh IH, Kim DW. Three-dimensional approach to stem cell therapy. J Korean Med Sci 2002; 17: 151-60. https://doi.org/10.3346/jkms.2002.17.2.151
  20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-7. https://doi.org/10.1080/14653240600855905
  21. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211-28. https://doi.org/10.1089/107632701300062859
  22. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189: 54-63. https://doi.org/10.1002/jcp.1138
  23. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004; 6: 7-14. https://doi.org/10.1080/14653240310004539
  24. Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol 2006; 325: 35-46.
  25. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 2009; 79: 235-44. https://doi.org/10.1111/j.1445-2197.2009.04852.x
  26. Safford KM, Rice HE. Stem cell therapy for neurologic disorders: therapeutic potential of adipose-derived stem cells. Curr Drug Targets 2005; 6: 57-62. https://doi.org/10.2174/1389450053345028
  27. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71-4. https://doi.org/10.1126/science.276.5309.71
  28. Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 2000; 185: 98-106. https://doi.org/10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1
  29. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238: 265-72. https://doi.org/10.1006/excr.1997.3858
  30. Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase i dose-escalation trial. Stem Cells Transl Med 2016; 5: 847-56. https://doi.org/10.5966/sctm.2015-0245
  31. Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 2011; 5: 79.
  32. Richardson SM, Kalamegam G, Pushparaj PN, Matta C, Memic A, Khademhosseini A, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 2016; 99: 69-80. https://doi.org/10.1016/j.ymeth.2015.09.015
  33. Migliorini F, Rath B, Tingart M, Baroncini A, Quack V, Eschweiler J. Autogenic mesenchymal stem cells for intervertebral disc regeneration. Int Orthop 2019; 43: 1027-36. https://doi.org/10.1007/s00264-018-4218-y
  34. Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25: 1577-87. https://doi.org/10.1016/j.joca.2017.07.004
  35. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-95. https://doi.org/10.1056/NEJM199410063311401
  36. Yan H, Yu C. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 2007; 23: 178-87. https://doi.org/10.1016/j.arthro.2006.09.005
  37. Goessler UR, Bugert P, Bieback K, Stern-Straeter J, Bran G, Hormann K, et al. Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. Int J Mol Med 2008; 21: 271-9.
  38. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-301. https://doi.org/10.1634/stemcells.2005-0342
  39. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10: 199-206. https://doi.org/10.1053/joca.2001.0504
  40. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 2004; 13: 595-600. https://doi.org/10.3727/000000004783983747
  41. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patellofemoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 2007; 1: 74-9. https://doi.org/10.1002/term.8
  42. Erggelet C, Vavken P. Microfracture for the treatment of cartilage defects in the knee joint - a golden standard? J Clin Orthop Trauma 2016; 7: 145-52. https://doi.org/10.1016/j.jcot.2016.06.015
  43. Kramer J, Bohrnsen F, Lindner U, Behrens P, Schlenke P, Rohwedel J. In vivo matrix-guided human mesenchymal stem cells. Cell Mol Life Sci 2006; 63: 616-26. https://doi.org/10.1007/s00018-005-5527-z
  44. Tseng WJ, Huang SW, Fang CH, Hsu LT, Chen CY, Shen HH, et al. Treatment of osteoarthritis with collagen-based scaffold: a porcine animal model with xenograft mesenchymal stem cells. Histol Histopathol 2018; 33: 1271-86.
  45. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 2008; 11: 343-53.
  46. Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee--stem cells. J Indian Med Assoc 2010; 108: 583-5.
  47. Levinger I, Levinger P, Trenerry MK, Feller JA, Bartlett JR, Bergman N, et al. Increased inflammatory cytokine expression in the vastus lateralis of patients with knee osteoarthritis. Arthritis Rheum 2011; 63: 1343-8. https://doi.org/10.1002/art.30287
  48. Orita S, Koshi T, Mitsuka T, Miyagi M, Inoue G, Arai G, et al. Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord 2011; 12: 144. https://doi.org/10.1186/1471-2474-12-144
  49. Peeters CM, Leijs MJ, Reijman M, van Osch GJ, Bos PK. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthritis Cartilage 2013; 21: 1465-73. https://doi.org/10.1016/j.joca.2013.06.025
  50. Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M, Marasco W. Safety and complications reporting on the reimplantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 2010; 5: 81-93. https://doi.org/10.2174/157488810790442796
  51. Kim SH, Ha CW, Park YB, Nam E, Lee JE, Lee HJ. Intraarticular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 2019; 139: 971-80. https://doi.org/10.1007/s00402-019-03140-8
  52. Ha CW, Park YB, Kim SH, Lee HJ. Intra-articular mesenchymal stem cells in osteoarthritis of the knee: a systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy 2019; 35: 277-88.e2. https://doi.org/10.1016/j.arthro.2018.07.028
  53. Rodriguez-Merchan EC. Intra-articular injections of fatderived mesenchymal stem cells in knee osteoarthritis: are they recommended? Hosp Pract (1995) 2018; 46: 172-4. https://doi.org/10.1080/21548331.2018.1505181
  54. Pas HI, Winters M, Haisma HJ, Koenis MJ, Tol JL, Moen MH. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med 2017; 51: 1125-33. https://doi.org/10.1136/bjsports-2016-096793
  55. Iijima H, Isho T, Kuroki H, Takahashi M, Aoyama T. Effectiveness of mesenchymal stem cells for treating patients with knee osteoarthritis: a meta-analysis toward the establishment of effective regenerative rehabilitation. NPJ Regen Med 2018; 3: 15. https://doi.org/10.1038/s41536-018-0041-8
  56. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005; 8: 346-53. https://doi.org/10.1038/nn1405
  57. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary firstpass effect. Stem Cells Dev 2009; 18: 683-92. https://doi.org/10.1089/scd.2008.0253
  58. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001; 12: 559-63. https://doi.org/10.1097/00001756-200103050-00025
  59. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. Expression of CCR2 in both resident and bone marrowderived microglia plays a critical role in neuropathic pain. J Neurosci 2007; 27: 12396-406. https://doi.org/10.1523/JNEUROSCI.3016-07.2007
  60. Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 2004; 21: 33-9. https://doi.org/10.1089/089771504772695922
  61. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, et al. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci 2010; 67: 655-69. https://doi.org/10.1007/s00018-009-0202-4
  62. Chen G, Park CK, Xie RG, Ji RR. Intrathecal bone marrow stromal cells inhibit neuropathic pain via $TGF-{\beta}$ secretion. J Clin Invest 2015; 125: 3226-40. https://doi.org/10.1172/JCI80883
  63. Mariani E, Facchini A. Clinical applications and biosafety of human adult mesenchymal stem cells. Curr Pharm Des 2012; 18: 1821-45. https://doi.org/10.2174/138161212799859666
  64. Nesti C, Pardini C, Barachini S, D'Alessandro D, Siciliano G, Murri L, et al. Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res 2011; 1367: 94-102. https://doi.org/10.1016/j.brainres.2010.09.042
  65. Sarnowska A, Braun H, Sauerzweig S, Reymann KG. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Exp Neurol 2009; 215: 317-27. https://doi.org/10.1016/j.expneurol.2008.10.023
  66. Ossipov MH. Growth factors and neuropathic pain. Curr Pain Headache Rep 2011; 15: 185-92. https://doi.org/10.1007/s11916-011-0183-5
  67. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007; 10: 1361-8. https://doi.org/10.1038/nn1992
  68. Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, et al. The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 2008; 137: 81-95. https://doi.org/10.1016/j.pain.2007.08.017
  69. Apfel SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 1999; 9: 393-413. https://doi.org/10.1111/j.1750-3639.1999.tb00234.x
  70. Alexander GM, van Rijn MA, van Hilten JJ, Perreault MJ, Schwartzman RJ. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 2005; 116: 213-9. https://doi.org/10.1016/j.pain.2005.04.013
  71. Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P, Busca G, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease. Brain Res 2010; 1311: 12-27. https://doi.org/10.1016/j.brainres.2009.11.041
  72. Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 2008; 1229: 233-48. https://doi.org/10.1016/j.brainres.2008.06.087
  73. Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience 2011; 199: 515-22. https://doi.org/10.1016/j.neuroscience.2011.09.064
  74. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease. J Neurochem 2008; 107: 141-51. https://doi.org/10.1111/j.1471-4159.2008.05589.x
  75. Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S. Neuroprotective effects of mesenchymal stem cell transplantation in animal model of cerebellar degeneration. Neurol Res 2011; 33: 913-20. https://doi.org/10.1179/1743132811Y.0000000036
  76. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009; 20: 419-27. https://doi.org/10.1016/j.cytogfr.2009.10.002
  77. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 2010; 1: 2. https://doi.org/10.1186/scrt2
  78. Zhang EJ, Song CH, Ko YK, Lee WH. Intrathecal administration of mesenchymal stem cells reduces the reactive oxygen species and pain behavior in neuropathic rats. Korean J Pain 2014; 27: 239-45. https://doi.org/10.3344/kjp.2014.27.3.239
  79. Jeong JO, Kim MO, Kim H, Lee MY, Kim SW, Ii M, et al. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 2009; 119: 699-708. https://doi.org/10.1161/CIRCULATIONAHA.108.789297
  80. Naruse K, Sato J, Funakubo M, Hata M, Nakamura N, Kobayashi Y, et al. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One 2011; 6: e27458. https://doi.org/10.1371/journal.pone.0027458
  81. Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV, et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 2006; 116: 344-56. https://doi.org/10.1172/JCI26295
  82. Tse HF, Siu CW, Zhu SG, Songyan L, Zhang QY, Lai WH, et al. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur J Heart Fail 2007; 9: 747-53. https://doi.org/10.1016/j.ejheart.2007.03.008
  83. Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 2008; 57: 3099-107. https://doi.org/10.2337/db08-0031
  84. Kim BJ, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Lab Anim Res 2011; 27: 171-6. https://doi.org/10.5625/lar.2011.27.2.171
  85. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 2010; 5: e10088. https://doi.org/10.1371/journal.pone.0010088
  86. Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM. Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Stem Cells Transl Med 2012; 1: 557-65. https://doi.org/10.5966/sctm.2012-0025
  87. Comerota AJ, Link A, Douville J, Burchardt ER. Upper extremity ischemia treated with tissue repair cells from adult bone marrow. J Vasc Surg 2010; 52: 723-9. https://doi.org/10.1016/j.jvs.2010.04.020
  88. Yezierski RP. Pain following spinal cord injury: the clinical problem and experimental studies. Pain 1996; 68: 185-94. https://doi.org/10.1016/S0304-3959(96)03178-8
  89. Satake K, Matsuyama Y, Kamiya M, Kawakami H, Iwata H, Adachi K, et al. Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injury. Neuroreport 2000; 11: 3877-81. https://doi.org/10.1097/00001756-200011270-00054
  90. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994; 367: 170-3. https://doi.org/10.1038/367170a0
  91. Eaton MJ, Wolfe SQ, Martinez M, Hernandez M, Furst C, Huang J, et al. Subarachnoid transplant of a human neuronal cell line attenuates chronic allodynia and hyperalgesia after excitotoxic spinal cord injury in the rat. J Pain 2007; 8: 33-50. https://doi.org/10.1016/j.jpain.2006.05.013
  92. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 2002; 99: 2199-204. https://doi.org/10.1073/pnas.042678299
  93. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 2008; 3: e3336. https://doi.org/10.1371/journal.pone.0003336
  94. Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; a systematic review and meta-analysis. Neuroscience 2016; 322: 377-97. https://doi.org/10.1016/j.neuroscience.2016.02.034
  95. Macias MY, Syring MB, Pizzi MA, Crowe MJ, Alexanian AR, Kurpad SN. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol 2006; 201: 335-48. https://doi.org/10.1016/j.expneurol.2006.04.035
  96. Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg 2007; 104: 944-8. https://doi.org/10.1213/01.ane.0000258021.03211.d0
  97. Vadivelu S, Willsey M, Curry DJ, McDonald JW 3rd. Potential role of stem cells for neuropathic pain disorders. Neurosurg Focus 2013; 35: E11.
  98. Choi JI, Cho HT, Jee MK, Kang SK. Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy. Biomaterials 2013; 34: 4956-70. https://doi.org/10.1016/j.biomaterials.2013.02.037
  99. Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zalfa C, et al. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012; 153: 850-61. https://doi.org/10.1016/j.pain.2012.01.008
  100. Sacerdote P, Niada S, Franchi S, Arrigoni E, Rossi A, Yenagi V, et al. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev 2013; 22: 1252-63. https://doi.org/10.1089/scd.2012.0398
  101. Coronel MF, Musolino PL, Brumovsky PR, Hokfelt T, Villar MJ. Bone marrow stromal cells attenuate injury-induced changes in galanin, NPY and NPY Y1-receptor expression after a sciatic nerve constriction. Neuropeptides 2009; 43: 125-32. https://doi.org/10.1016/j.npep.2008.12.003
  102. Lee S, Moon CS, Sul D, Lee J, Bae M, Hong Y, et al. Comparison of growth factor and cytokine expression in patients with degenerated disc disease and herniated nucleus pulposus. Clin Biochem 2009; 42: 1504-11. https://doi.org/10.1016/j.clinbiochem.2009.06.017
  103. Orozco L, Soler R, Morera C, Alberca M, Sanchez A, Garcia-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 2011; 92: 822-8. https://doi.org/10.1097/TP.0b013e3182298a15
  104. Franchi S, Castelli M, Amodeo G, Niada S, Ferrari D, Vescovi A, et al. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. Biomed Res Int 2014; 2014: 470983. https://doi.org/10.1155/2014/470983
  105. Ikebe C, Suzuki K. Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int 2014; 2014: 951512. https://doi.org/10.1155/2014/951512
  106. Koga H, Engebretsen L, Brinchmann JE, Muneta T, Sekiya I. Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1289-97. https://doi.org/10.1007/s00167-009-0782-4
  107. Van Osch GJ, Van Der Veen SW, Burger EH, Verwoerd-Verhoef HL. Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Eng 2000; 6: 321-30. https://doi.org/10.1089/107632700418047
  108. Wiesmann A, Buhring HJ, Mentrup C, Wiesmann HP. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med 2006; 2: 8. https://doi.org/10.1186/1746-160X-2-8

Cited by

  1. MicroRNA-547-5p-mediated interleukin-33/suppressor of tumorigenicity 2 signaling underlies the genesis and maintenance of neuropathic pain and is targeted by the therapy with bone marrow stromal cells vol.16, 2019, https://doi.org/10.1177/1744806920931737
  2. The Effect of Autologous Adipose Tissue–Derived Mesenchymal Stem Cells’ Therapy in the Treatment of Chronic Posttraumatic Spinal Cord Injury in a Domestic Ferret Patient vol.29, 2020, https://doi.org/10.1177/0963689720928982
  3. Preemptive Stem Cells Ameliorate Neuropathic Pain in Rats: A Central Component of Preemptive Analgesia vol.27, pp.2, 2019, https://doi.org/10.1017/s1431927621000076