DOI QR코드

DOI QR Code

Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties

  • 서동범 (충남대학교 공과대학 신소재공학과) ;
  • 황제환 (한국표준과학연구원 융합물성측정센터) ;
  • 오보람 (한국표준과학연구원 융합물성측정센터) ;
  • 김준오 (한국표준과학연구원 융합물성측정센터) ;
  • 이상준 (한국표준과학연구원 융합물성측정센터) ;
  • 김의태 (충남대학교 공과대학 신소재공학과)
  • Seo, Dong-Bum (Department of Materials Science & Engineering, Chungnam National University) ;
  • Hwang, Je-hwan (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Oh, Boram (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Kim, Jun Oh (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Lee, Sang Jun (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 투고 : 2019.06.17
  • 심사 : 2019.08.19
  • 발행 : 2019.09.27

초록

We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.

키워드

참고문헌

  1. H. Yuan, G. Apgar, J. Kim, J. Laquindanum, V. Nalavade, P. Beer, J. Kimchi and T. Wong, Proc. of SPIE, 6940, 69403C1 (2008).
  2. P. Norton, J. Campbell III, S. Horn and D. Reago, Proc. of SPIE, 4130, 226 (2000).
  3. S. Horn, P. Norton, T. Cincotta, A. J. Stoltz, Jr., J.D. Benson, P. Perconti and J. Campbell III, Proc. of SPIE, 5074, 44 (2003).
  4. W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho and J. Jensen, Proc. SPIE 5783, 325 (2005).
  5. A. Rogalski, Prog. Quantum Electronics, 27, 59 (2003). https://doi.org/10.1016/S0079-6727(02)00024-1
  6. B. F. Levine, J. Appl. Phys., 74, R1 (1993). https://doi.org/10.1063/1.354252
  7. A. Madhukar, J. Campbell, E. T. Kim, Z. H. Chen and J. Ye, in Semiconductor Nanostructures for Optoelectronic Applications, p. 45, T. Steiner, Artech House, Inc., Boston (2004).
  8. E. T. Kim, Z. H. Chen and A. Madhukar, Appl. Phys. Lett., 79, 3341 (2001). https://doi.org/10.1063/1.1417513
  9. Z. Ye, J. Campbell, Z. H. Chen, E. T. Kim and A. Madhukar, IEEE J. Quantum Electron., 38, 1234 (2002). https://doi.org/10.1109/JQE.2002.802159
  10. E. T. Kim, Z. H. Chen, M. Ho and A. Madhukar, J. Vac. Sci. Technol., B, 20, 1188 (2002). https://doi.org/10.1116/1.1463695
  11. S. J. Lee, J. O. Kim, Y. G. Kim, S. K. Noh, Y. H. Kyu, S. M. Choi and J. W. Choe, J. Korean Phys. Soc., 46, 1396 (2005).
  12. J. O. Kim, S. J. Lee, S. K. Noh, Y. H. Ryu, S. M. Choi and J. W. Choe, J. Korean Phys. Soc., 47, 838 (2005).
  13. H. L. Wang, F. H. Yang and S. L. Feng, J. Cryst. Growth, 212, 35 (2000). https://doi.org/10.1016/S0022-0248(00)00029-4
  14. J. Phillips, K. Kamath, X. Zhou, N. Chervels and P. Bhattacharya, Appl. Phys. Lett., 71, 2079 (1997). https://doi.org/10.1063/1.119347
  15. D. B. Seo, J. H. Hwang, B. Oh, S. K. Noh, J. O. Kim, S. J. Lee and E. T. Kim, Korean J. Mater. Res., 28, 659 (2018). https://doi.org/10.3740/MRSK.2018.28.11.659
  16. T. D. Nguyen, J. O. Kim, Y. H. Kim, E. T. Kim, Q. L. Nguyen, S. J. Lee, AIP Adv., 8, 025015 (2018). https://doi.org/10.1063/1.5020532
  17. R. S. Attaluri, S. Annamalai, K. T. Posani, A. Stintz and S. Krishna, J. Appl. Phys. 99, 083105 (2006). https://doi.org/10.1063/1.2189973
  18. D. B Seo, T. D. Nguyen and E. T. Kim, Int. J. Nanotechnol., 13, 385 (2016). https://doi.org/10.1504/IJNT.2016.077088