References
- Pulce C, Lamaison D, Keck G, Bostvironnois C, Nicolas J, Descotes J. 1991. Collective human food poisonings by clenbuterol residues in veal liver. Vet. Hum. Toxicol 33: 480-481.
- Li Y, Lu S, Liu Z, Sun L, Guo J, Hu P, et al. 2015. A monoclonal antibody based enzyme-linked immunosorbent assay for detection of phenylethanolamine A in tissue of swine. Food Chem. 2015; 167: 40-44. https://doi.org/10.1016/j.foodchem.2014.06.085
- Hoey AJ, Matthews ML, Badran TW, Pegg GG, Sillence MN. 1995. Cardiovascular effects of clenbuterol are beta 2-adrenoceptor-mediated in steers. J. Anim. Sci. 73: 1754-1765. https://doi.org/10.2527/1995.7361754x
- Bolera DD, Shrecka AL, Faulknera DB, Killefera J, McKeitha FK, Hommb JW, et al. 2012. Effect of ractopamine hydrochloride (Optaflexx) dose on live animal performance, carcass characteristics and tenderness in early weaned beef steers. Meat Sci. 92: 458-463. https://doi.org/10.1016/j.meatsci.2012.05.011
- The Ministry of Agriculture of China. List of banned animal feed and drinking water substances. Bulletin of the Ministry of Agriculture of the People's Republic of China No. 1519 2010.
- European Commission. Council Directive 96/22/EC of 29 April 1996 concerning the prohibition on the use in stockfarming of certain substances having a hormonal orthyrostatic action and of beta-agonists, and repealing Directives 81/602/EEC, 88/146/EEC and 88/299/EEC. Official Journal of the European Commission 1996; L125(23): 3-9.
- Yao X, Yan P, Tang Q, Deng A, Li J. 2013. Quantum dots based electrochemiluminescent immunosensor bycoupling enzymatic amplification for ultrasensitive detection ofclenbuterol. Anal. Chim. Acta 798: 82-88. https://doi.org/10.1016/j.aca.2013.08.029
-
Garcia P, Paris AC, Gil J, Popot MA, Bonnaire Y. 2011. Analysis of
${\beta}$ -agonists by HPLC/ESI-MS(n) in horse doping control. Biomed. Chromatogr. 25: 147-154. https://doi.org/10.1002/bmc.1562 - Du W, Zhao G, Fu Q, Sun M, Zhou H, Chang C. 2014. Combined microextraction by packed sorbent and high-performance liquid chromatography-ultraviolet detection for rapid analysis of ractopamine in porcine muscle and urine samples. Food Chem. 145: 789-795. https://doi.org/10.1016/j.foodchem.2013.08.094
- Yang S, Liu X, Xing Y, Zhang D, Wang S, Wang X, et al. 2013. Detection of clenbuterol at trace levels in doping analysis using different gas chromatographic-mass spectrometric techniques. J. Chromatogr. Sci. 51: 436-445. https://doi.org/10.1093/chromsci/bms160
-
Caban M, Migowska N, Stepnowski P, Kwiatkowski M, Kumirska J. 2012. Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of
${\beta}$ -blockers and${\beta}$ -agonists in environmental samples. J. Chromatogr. A 1258: 117-127. https://doi.org/10.1016/j.chroma.2012.08.029 -
Stefano VD, Pitonzo R, Giaccone V, Alongi A, Macaluso A, Cicero N, et al. 2017. Ferrantelli. Analysis of
${\beta}$ 2-agonists in cattle hair samples using a rapid UHPLC-ESI-MS/MS method. Nat. Prod. Res. 31: 482-486. https://doi.org/10.1080/14786419.2016.1190718 -
Suo D, Wang R, Wang P, Fan X, Su X. 2017. Pseudo template molecularly imprinted polymer for determination of 14 kind of
${\beta}$ -agonists in animal urine by ultra-highperformance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1526: 23-30. https://doi.org/10.1016/j.chroma.2017.09.076 -
Nguyen TA, Pham TN, Doan TT, Ta TT, Saiz J, Nguyen TQ, et al. 2014. Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of
${\beta}$ -agonists in pharmaceutical and pig-feed samples. J. Chromatogr. A 1360: 305-311. https://doi.org/10.1016/j.chroma.2014.07.074 -
Gao F, Wu M, Zhang Y, Wang G, Wang Q, He P, et al. 2014. Sensitive determination of four
${\beta}$ 2-agonists in pig feed by capillary electrophoresis using on-line sample preconcentration with contactless conductivity detection. J. Chromatogr. B 973: 29-32. https://doi.org/10.1016/j.jchromb.2014.10.004 -
Jiang D, Cao B, Wang M, Yang H, Zhao K, Li J, et al. 2017. Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay for the detection of a new
${\beta}$ -agonist, phenylethanolamine A, in food samples. J. Sci. Food Agric. 97: 1001-1009. https://doi.org/10.1002/jsfa.7826 - Han S, Zhou T, Yin B, He P. 2018. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Mikrochim. Acta 185: 210. https://doi.org/10.1007/s00604-018-2736-3
-
Regiart M, Escudero LA, Aranda P, Martinez NA, Bertolino FA, Raba J. 2015. Copper nanoparticles applied to the preconcentration and electrochemical determination of
${\beta}$ -adrenergic agonist: an efficient tool for the control of meat production. Talanta 135: 138-144. https://doi.org/10.1016/j.talanta.2014.12.026 - Liu Y, Lu Q, Hu X, Wang H, Li H, Zhang Y, et al. 2017. A Nanosensor based on carbon dots for recovered fluorescence detection clenbuterol in pork samples. J. Fluoresc. 27: 1847-1853. https://doi.org/10.1007/s10895-017-2122-2
-
Zhang G, Tang Y, Shang J, Wang Z, Yu H, Du W, et al. 2015. Flow-injection chemiluminescence method to detect a
${\beta}$ 2 adrenergic agonist. Luminescence 30: 102-109. https://doi.org/10.1002/bio.2698 -
Li M, Yang H, Li S, Zhao K, Li J, Jiang D, et al. 2014. Ultrasensitive and quantitative detection of a new
${\beta}$ -agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). J. Agric. Food Chem. 62: 10896-10902. https://doi.org/10.1021/jf503599x -
Helbo V, Vandenbroeck M, Maghuin-Rogister G. 1994. Development of a radioreceptor assay for
${\beta}$ 2 adrenergic agonists. Arch. Lebensmittelhyg 45: 57-61. - Danyi S, Degand G, Duez C, Granier B, Maghuin-Rogister G, Scippo ML. 2007. Solubilisation and binding characteristics of a recombinant beta2-adrenergicreceptor expressed in the membrane of Escherichia coli for the multianalyte detection of beta-agonists and antagonists residues in food-producing animals. Anal. Chim. Acta 589(2): 159-165. https://doi.org/10.1016/j.aca.2007.02.057
- Meenagh SA, Elliott CT, Buick RK, Izeboud CA, Witkamp RF. 2001. The preparation, solubilisation and binding characteristics of a beta 2-adrenoceptor isolated from transfected Chinese hamster cells. Analyst 126: 491-494. https://doi.org/10.1039/b008407g
-
Boyd S, Heskamp HH, Bovee TF, Nielen MW, Elliott CT. 2009. Development, validation and implementation of a receptor based bioassay capable of detecting a broad range of
${\beta}$ -agonist drugs in animal feeding stuffs. Anal. Chim. Acta 637: 24-32. https://doi.org/10.1016/j.aca.2008.09.035 -
Wang J, She Y, Wang M, Jin M, Li Y, Wang J, et al. 2015. Multiresidue method for analysis of
${\beta}$ -agonists in swine urine by enzyme linked receptor assay based on${\beta}$ 2-adrenergic receptor expressed in HEK293 cells. PLoS One 10: e0139176. https://doi.org/10.1371/journal.pone.0139176 -
Wang J, Liu Y, Zhang J, Han Z, Wang W, Liu Y, et al. 2017. Cell-free expression, purification, and characterization of the functional
${\beta}$ 2-Adrenergic receptor for multianalyte detection of${\beta}$ -Agonists. Biochemistry (Moscow) 82: 1346-1353. https://doi.org/10.1134/S0006297917110128 -
Cheng G, Li F, Peng D, Huang L, Hao H, Liu Z, et al. 2014. Development of an enzyme- linked-receptor assay based on Syrian hamster
${\beta}$ 2-adrenergic receptor for detection of${\beta}$ -agonists. Anal. Biochem. 459: 18-23. https://doi.org/10.1016/j.ab.2014.05.005 -
Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, et al. 2007. Crystal structure of the human
${\beta}$ 2-adrenergic G-protein-coupled Receptor. Nature 450: 383-387. https://doi.org/10.1038/nature06325 - Parker E M, Kameyama K, Higashijima T, Ross EM. 1991. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 266: 519-527. https://doi.org/10.1016/S0021-9258(18)52467-4