References
- Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817: 182-193. https://doi.org/10.1016/j.bbabio.2011.04.012
- Goss R, Jakob T. 2010. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106: 103-122. https://doi.org/10.1007/s11120-010-9536-x
- Demmig-Adams B, Adams WW. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1: 21-26. https://doi.org/10.1016/S1360-1385(96)80019-7
-
Cowan A, Logie M, Rose P, Phillips L. 1995. Stress induction of zeaxanthin formation in the
${\beta}$ -carotene accumulating alga Dunaliella salina Teod. J. Plant Physiol. 146: 554-562. https://doi.org/10.1016/S0176-1617(11)82023-7 - Schwarz N, Armbruster U, Iven T, Bruckle L, Melzer M, Feussner I, et al. 2014. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. Plant Cell Physiol. 56: 346-357. https://doi.org/10.1093/pcp/pcu167
- Kim M, Ahn J, Jeon H, Jin E. 2017. Development of a Dunaliella tertiolecta strain with increased zeaxanthin content using random mutagenesis. Mar. Drugs 15: pii.E189. https://doi.org/10.3390/md15060189
- Audran C, Borel C, Frey A, Sotta B, Meyer C, Simonneau T, et al. 1998. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol. 118: 1021-1028. https://doi.org/10.1104/pp.118.3.1021
- Hieber AD, Bugos RC, Yamamoto HY. 2000. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim. Biophys. Acta 1482: 84-91. https://doi.org/10.1016/S0167-4838(00)00141-2
- Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, et al. 1996. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 15: 2331. https://doi.org/10.1002/j.1460-2075.1996.tb00589.x
- Burbidge A, Grieve T, Terry C, Corlett J, Thompson A, Taylor I. 1997. Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J. Exp. Bot. 48: 1749-1750. https://doi.org/10.1093/jexbot/48.314.1749
- Wu C, Zhou B. 2018. Characterization of a sterile dwarf mutant and the cloning of zeaxanthin epoxidase in Asian cotton (Gossypium arboreum L.). Plant Growth Regul. 85: 57-72. https://doi.org/10.1007/s10725-018-0373-9
- Yang Q, Yuan D, Shi L, Capell T, Bai C, Wen N, et al. 2012. Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants. Transgenic Res. 21: 1043-1056. https://doi.org/10.1007/s11248-012-9591-5
- Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, et al. 2016. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep. 35: 439-453. https://doi.org/10.1007/s00299-015-1895-5
- Bugos RC, Hieber AD, Yamamoto HY. 1998. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J. Biol. Chem. 273: 15321-15324. https://doi.org/10.1074/jbc.273.25.15321
- Audran C, Liotenberg S, Gonneau M, North H, Frey A, Tap-Waksman K, et al. 2001. Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Funct. Plant Biol. 28: 1161-1173. https://doi.org/10.1071/PP00134
- Hager A, Holocher K. 1994. Localization of the xanthophyllcycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192: 581-589. https://doi.org/10.1007/BF00203597
- Bratt CE, Arvidsson P-O, Carlsson M, Akerlund H-E. 1995. Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth. Res. 45: 169-175. https://doi.org/10.1007/BF00032588
- North HM, Frey A, Boutin J-P, Sotta B, Marion-Poll A. 2005. Analysis of xanthophyll cycle gene expression during the adaptation of Arabidopsis to excess light and drought stress: Changes in RNA steady-state levels do not contribute to short-term responses. Plant Sci. 169: 115-124. https://doi.org/10.1016/j.plantsci.2005.03.002
- Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB. 2000. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cisepoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol. Biol. 42: 833-845. https://doi.org/10.1023/A:1006448428401
- Ruiz-Sola MA, Arbona V, Gomez-Cadenas A, Rodriguez-Concepcion M, Rodriguez-Villalon A. 2014. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9: e90765. https://doi.org/10.1371/journal.pone.0090765
- Jin E, Yokthongwattana K, Polle JE, Melis A. 2003. Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. Plant Physiol. 132: 352-364. https://doi.org/10.1104/pp.102.019620
- Baroli I, Do AD, Yamane T, Niyogi KK. 2003. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15: 992-1008. https://doi.org/10.1105/tpc.010405
- Niyogi KK, Bjorkman O, Grossman AR. 1997. Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369-1380. https://doi.org/10.2307/3870388
- Kim M, Kang J, Kang Y, Kang B, Jin E. 2018. Loss of function in Zeaxanthin Epoxidase of Dunaliella tertiolecta caused by a single amino acid mutation within the substrate-binding site. Mar. Drugs 16: 418. https://doi.org/10.3390/md16110418
- Eilers U, Dietzel L, Breitenbach J, Buchel C, Sandmann G. 2016. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. J. Plant Physiol. 192: 64-70. https://doi.org/10.1016/j.jplph.2016.01.006
- Borowitzka MA, Siva CJ. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 19: 567-590. https://doi.org/10.1007/s10811-007-9171-x
- Borowitzka MA, Borowitzka LJ, Kessly D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2: 111-119. https://doi.org/10.1007/BF00023372
- Park S, Kim M, Lee S-G, Lee Y, Choi H-K, Jin E. 2015. Contrasting photoadaptive strategies of two morphologically distinct Dunaliella species under various salinities. J. Appl. Phycol. 27: 1053-1062. https://doi.org/10.1007/s10811-014-0394-3
- Cazzonelli CI, Pogson BJ. 2010. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 15: 266-274. https://doi.org/10.1016/j.tplants.2010.02.003
- Lu S, Li L. 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50: 778-785. https://doi.org/10.1111/j.1744-7909.2008.00708.x