DOI QR코드

DOI QR Code

Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling

  • Nguyen, Quy Thi Cam (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Sun-ji (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Choi, Seo-wha (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Na, Yeon-ju (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Song, Mi-ran (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Hoang, Quyen Thi Ngoc (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Sim, Seo Young (Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Kim, Min-Sik (Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Kim, Jeong-Il (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Soh, Moon-Soo (Department of Molecular Biology, Sejong University) ;
  • Kim, Soo Young (Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2019.07.30
  • 심사 : 2019.08.09
  • 발행 : 2019.09.30

초록

Abscisic acid (ABA) is a phytohormone essential for seed development and seedling growth under unfavorable environmental conditions. The signaling pathway leading to ABA response has been established, but relatively little is known about the functional regulation of the constituent signaling components. Here, we present several lines of evidence that Arabidopsis Raf-like kinase Raf10 modulates the core ABA signaling downstream of signal perception step. In particular, Raf10 phosphorylates subclass III SnRK2s (SnRK2.2, SnRK2.3, and SnRK2.6), which are key positive regulators, and our study focused on SnRK2.3 indicates that Raf10 enhances its kinase activity and may facilitate its release from negative regulators. Raf10 also phosphorylates transcription factors (ABI5, ABF2, and ABI3) critical for ABA-regulted gene expression. Furthermore, Raf10 was found to be essential for the in vivo functions of SnRK2s and ABI5. Collectively, our data demonstrate that Raf10 is a novel regulatory component of core ABA signaling.

키워드

참고문헌

  1. Assmann, S.M., Snyder, J.A., and Lee, Y.R.J. (2000). ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wildtype stomatal response to humidity. Plant Cell Environ. 23, 387-395. https://doi.org/10.1046/j.1365-3040.2000.00551.x
  2. Belin, C., de Franco, P.O., Bourbousse, C., Chaignepain, S., Schmitter, J.M., Vavasseur, A., Giraudat, J., Barbier-Brygoo, H., and Thomine, S. (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 1316-1327. https://doi.org/10.1104/pp.106.079327
  3. Bensmihen, S., Rippa, S., Lambert, G., Jublot, D., Pautot, V., Granier, F., Giraudat, J., and Parcy, F. (2002). The homologous ABI5 and EEL transcription factors function antagonistically to Fine-tune gene expression during late embryogenesis. Plant Cell 14, 1391-1403. https://doi.org/10.1105/tpc.000869
  4. Bentsink, L. and Koornneef, M. (2008). Seed dormancy and germination. Arab. Book 6, e0119. https://doi.org/10.1199/tab.0119
  5. Boudsocq, M., Droillard, M.J., Barbier-Brygoo, H., and Lauriere, C. (2007). Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol. Biol. 63, 491-503. https://doi.org/10.1007/s11103-006-9103-1
  6. Cai, Z.Y., Liu, J.J., Wang, H.J., Yang, C.J., Chen, Y.X., Li, Y.C., Pan, S.J., Dong, R., Tang, G.L., Barajas-Lopez, J.D., et al. (2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 9651-9656. https://doi.org/10.1073/pnas.1316717111
  7. Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723-1730. https://doi.org/10.1074/jbc.275.3.1723
  8. Choi, S.W., Lee, S.B., Na, Y.J., Jeung, S.G., and Kim, S.Y. (2017). Arabidopsis MAP3K16 and other salt-inducible MAP3Ks regulate ABA response redundantly. Mol. Cells 40, 230-242. https://doi.org/10.14348/molcells.2017.0002
  9. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122
  10. Duttweiler, H.M. (1996). A highly sensitive and non-lethal betagalactosidase plate assay for yeast. Trends Genet. 12, 340-341. https://doi.org/10.1016/S0168-9525(96)80008-4
  11. Finkelstein, R. (2013). Abscisic Acid synthesis and response. Arab. Book 11, e0166. https://doi.org/10.1199/tab.0166
  12. Finkelstein, R.R. and Lynch, T.J. (2000). The arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609. https://doi.org/10.1105/tpc.12.4.599
  13. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664. https://doi.org/10.1038/nature08599
  14. Fujii, H., Verslues, P.E., and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494. https://doi.org/10.1105/tpc.106.048538
  15. Fujii, H., Verslues, P.E., and Zhu, J.K. (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. U. S. A. 108, 1717-1722. https://doi.org/10.1073/pnas.1018367108
  16. Fujii, H. and Zhu, J.K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. U. S. A. 106, 8380-8385. https://doi.org/10.1073/pnas.0903144106
  17. Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509-525. https://doi.org/10.1007/s10265-011-0412-3
  18. Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., et al. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123-2132. https://doi.org/10.1093/pcp/pcp147
  19. Fujita, Y., Yoshida, T., and Yamaguchi-Shinozaki, K. (2013). Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant. 147, 15-27. https://doi.org/10.1111/j.1399-3054.2012.01635.x
  20. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. U. S. A. 103, 1988-1993. https://doi.org/10.1073/pnas.0505667103
  21. Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251-1261. https://doi.org/10.1105/tpc.4.10.1251
  22. Guthrie, C. and Fink, G.R. (1991). Guide to yeast genetics and molecular biology. Methods Enzymol. 194, 1-863.
  23. Holdsworth, M.J., Bentsink, L., and Soppe, W.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179, 33-54. https://doi.org/10.1111/j.1469-8137.2008.02437.x
  24. Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., Kreis, M., Zhang, S.Q., Hirt, H., Wilson, C., et al. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301-308. https://doi.org/10.1016/S1360-1385(02)02302-6
  25. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 20, 3901-3907. https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
  26. Kanno, Y., Jikumaru, Y., Hanada, A., Nambara, E., Abrams, S.R., Kamiya, Y., and Seo, M. (2010). Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51, 1988-2001. https://doi.org/10.1093/pcp/pcq158
  27. Kim, S.Y. (2006). The role of ABF family bZIP class transcription factors in stress response. Physiol. Plant. 126, 519-527. https://doi.org/10.1111/j.1399-3054.2005.00601.x
  28. Kim, S.Y., Chung, H.J., and Thomas, T.L. (1997). Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryospecification elements in the Dc3 promoter using a modified yeast onehybrid system. Plant J. 11, 1237-1251. https://doi.org/10.1046/j.1365-313X.1997.11061237.x
  29. Kim, S.Y., Ma, J., Perret, P., Li, Z., and Thomas, T.L. (2002). Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol. 130, 688-697. https://doi.org/10.1104/pp.003566
  30. Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T. (2005). Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 44, 939-949. https://doi.org/10.1111/j.1365-313X.2005.02583.x
  31. Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., and Schroeder, J.I. (2006). The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol. 140, 127-139. https://doi.org/10.1104/pp.105.070318
  32. Lee, S.J., Cho, D.I., Kang, J.Y., and Kim, S.Y. (2009). An ARIA-interacting AP2 domain protein is a novel component of ABA signaling. Mol. Cells 27, 409-416. https://doi.org/10.1007/s10059-009-0058-3
  33. Lee, S.J., Lee, M.H., Kim, J.I., and Kim, S.Y. (2015). Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response. Plant Cell Physiol. 56, 84-97. https://doi.org/10.1093/pcp/pcu148
  34. Lopez-Molina, L. and Chua, N.H. (2000). A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. 41, 541-547. https://doi.org/10.1093/pcp/41.5.541
  35. Lopez-Molina, L., Mongrand, S., and Chua, N.H. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 98, 4782-4787. https://doi.org/10.1073/pnas.081594298
  36. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068. https://doi.org/10.1126/science.1172408
  37. Moglich, A., Ayers, R.A., and Moffat, K. (2009). Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17, 1282-1294. https://doi.org/10.1016/j.str.2009.08.011
  38. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., and Schroeder, J.I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol. 28, 154-162. https://doi.org/10.1016/j.pbi.2015.10.010
  39. Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., et al. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50, 1345-1363. https://doi.org/10.1093/pcp/pcp083
  40. Nambara, E. and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165-185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
  41. Ng, L.M., Soon, F.F., Zhou, X.E., West, G.M., Kovach, A., Suino-Powell, K.M., Chalmers, M.J., Li, J., Yong, E.L., Zhu, J.K., et al. (2011). Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proc. Natl. Acad. Sci. U. S. A. 108, 21259-21264. https://doi.org/10.1073/pnas.1118651109
  42. Nishimura, N., Sarkeshik, A., Nito, K., Park, S.Y., Wang, A., Carvalho, P.C., Lee, S., Caddell, D.F., Cutler, S.R., Chory, J., et al. (2010). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 61, 290-299. https://doi.org/10.1111/j.1365-313X.2009.04054.x
  43. Park, J., Lee, N., Kim, W., Lim, S., and Choi, G. (2011). ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23, 1404-1415. https://doi.org/10.1105/tpc.110.080721
  44. Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071. https://doi.org/10.1126/science.1173041
  45. Raghavendra, A.S., Gonugunta, V.K., Christmann, A., and Grill, E. (2010). ABA perception and signalling. Trends Plant Sci. 15, 395-401. https://doi.org/10.1016/j.tplants.2010.04.006
  46. Santiago, J., Dupeux, F., Betz, K., Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Marquez, J.A., and Rodriguez, P.L. (2012). Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci. 182, 3-11. https://doi.org/10.1016/j.plantsci.2010.11.014
  47. Saruhashi, M., Ghosh, T.K., Arai, K., Ishizaki, Y., Hagiwara, K., Komatsu, K., Shiwa, Y., Izumikawa, K., Yoshikawa, H., Umezawa, T., et al. (2015). Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc. Natl. Acad. Sci. U. S. A. 112, E6388-E6396. https://doi.org/10.1073/pnas.1511238112
  48. Schweighofer, A., Hirt, H., and Meskiene, I. (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9, 236-243. https://doi.org/10.1016/j.tplants.2004.03.007
  49. Singh, A., Pandey, A., Srivastava, A.K., Tran, L.S., and Pandey, G.K. (2016). Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit. Rev. Biotechnol. 36, 1023-1035. https://doi.org/10.3109/07388551.2015.1083941
  50. Sirichandra, C., Davanture, M., Turk, B.E., Zivy, M., Valot, B., Leung, J., and Merlot, S. (2010). The Arabidopsis ABA-Activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5, e13935. https://doi.org/10.1371/journal.pone.0013935
  51. Soon, F.F., Ng, L.M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., et al. (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335, 85-88. https://doi.org/10.1126/science.1215106
  52. Takahashi, F., Kuromori, T., Sato, H., and Shinozaki, K. (2018a). Regulatory gene networks in drought stress responses and resistance in plants. Adv. Exp. Med. Biol. 1081, 189-214. https://doi.org/10.1007/978-981-13-1244-1_11
  53. Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2018b). A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235-238. https://doi.org/10.1038/s41586-018-0009-2
  54. Tian, W., Hou, C., Ren, Z., Pan, Y., Jia, J., Zhang, H., Bai, F., Zhang, P., Zhu, H., He, Y., et al. (2015). A molecular pathway for CO(2) response in Arabidopsis guard cells. Nat. Commun. 6, 6057. https://doi.org/10.1038/ncomms7057
  55. Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T., and Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acidactivated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106, 17588-17593. https://doi.org/10.1073/pnas.0907095106
  56. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U. S. A. 97, 11632-11637. https://doi.org/10.1073/pnas.190309197
  57. Vilela, B., Najar, E., Lumbreras, V., Leung, J., and Pages, M. (2015). Casein kinase 2 negatively regulates abscisic acid-activated SnRK2s in the core abscisic acid-signaling module. Mol. Plant 8, 709-721. https://doi.org/10.1016/j.molp.2014.12.012
  58. Vlad, F., Droillard, M.J., Valot, B., Khafif, M., Rodrigues, A., Brault, M., Zivy, M., Rodriguez, P.L., Merlot, S., and Lauriere, C. (2010). Phosphosite mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s. Plant J. 63, 778-790. https://doi.org/10.1111/j.1365-313X.2010.04281.x
  59. Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., Leung, J., Rodriguez, P.L., Lauriere, C., and Merlot, S. (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 3170-3184. https://doi.org/10.1105/tpc.109.069179
  60. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949-956. https://doi.org/10.1046/j.1365-313X.2003.01676.x
  61. Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428-438. https://doi.org/10.1111/j.1365-313X.2004.02219.x
  62. Wang, P.C., Xue, L., Batelli, G., Lee, S., Hou, Y.J., Van Oosten, M.J., Zhang, H.M., Tao, W.A., and Zhu, J.K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U. S. A. 110, 11205-11210. https://doi.org/10.1073/pnas.1308974110
  63. Witte, C.P., Noel, L.D., Gielbert, J., Parker, J.E., and Romeis, T. (2004). Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol. Biol. 55, 135-147. https://doi.org/10.1007/s11103-004-0501-y
  64. Wooten, M.W. (2002). In-gel kinase assay as a method to identify kinase substrates. Sci. STKE 2002, pl15.
  65. Xiong, L.M., Schumaker, K.S., and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-S183. https://doi.org/10.1105/tpc.000596
  66. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. https://doi.org/10.1038/nprot.2007.199
  67. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. (2006a). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281, 5310-5318. https://doi.org/10.1074/jbc.M509820200
  68. Yoshida, T., Fujita, Y., Maruyama, K., Mogami, J., Todaka, D., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2015a). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 38, 35-49. https://doi.org/10.1111/pce.12351
  69. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABREdependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 61, 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x
  70. Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2015b). Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant Cell Physiol. 56, 1043-1052. https://doi.org/10.1093/pcp/pcv060
  71. Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., and Hirayama, T. (2006b). ABA-Hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 140, 115-126. https://doi.org/10.1104/pp.105.070128
  72. Zhou, Q., Hare, P.D., Yang, S.W., Zeidler, M., Huang, L.F., and Chua, N.H. (2005). FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1. Plant J. 43, 356-370. https://doi.org/10.1111/j.1365-313X.2005.02453.x

피인용 문헌

  1. Evolution of Abscisic Acid Signaling Module and Its Perception vol.11, 2019, https://doi.org/10.3389/fpls.2020.00934
  2. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures vol.71, pp.5, 2020, https://doi.org/10.1093/jxb/eraa012
  3. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? vol.21, pp.13, 2019, https://doi.org/10.3390/ijms21134607
  4. Decoding ABA and osmostress signalling in plants from an evolutionary point of view vol.43, pp.12, 2019, https://doi.org/10.1111/pce.13869
  5. Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems vol.10, pp.4, 2019, https://doi.org/10.3390/plants10040756
  6. Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants vol.10, pp.8, 2021, https://doi.org/10.3390/cells10081996
  7. Cold Stress in Citrus: A Molecular, Physiological and Biochemical Perspective vol.7, pp.10, 2021, https://doi.org/10.3390/horticulturae7100340
  8. Initiation and amplification of SnRK2 activation in abscisic acid signaling vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-22812-x
  9. Identification of Raf-Like Kinases B Subfamily Genes in Gossypium Species Revealed GhRAF42 Enhanced Salt Tolerance in Cotton vol.22, pp.23, 2019, https://doi.org/10.3390/ijms222312649