References
- R. Scoble & S. Israel. (2015). Age of Context. Goyang: JiAndSon.
- E. N. Ko. (2015). New an Introduction to Information and Communication. Seoul: Hanbit Academy.
- S. Masanori. (2017). New IT Trend. Seoul: Infopub.
- H. Y. Ko & N. G. Kim. (2019). Performance Analysis of Detecting buried pipelines in GPR images using Faster R-CNN. Journal of Convergence for Information Technology, 9(5), 21-26. https://doi.org/10.22156/CS4SMB.2019.9.5.021
- I. B. Yang. (2019). A study on Driver-vehicle Interface for Cooperative Driving. Journal of Convergence for Information Technology, 9(5), 27-33. https://doi.org/10.22156/CS4SMB.2019.9.5.027
- H. S. Choi & Y. H. Cho. (2019). Analysis of Security Problems of Deep Learning Technology. Journal of the Korea Convergence Society, 10(5), 9-16. https://doi.org/10.15207/JKCS.2019.10.5.009
- D. B. Lee & J. H. Seo. (2019). Classification Performance Improvement of UNSW-NB15 Dataset Based on Feature Selection. Journal of the Korea Convergence Society, 10(5), 35-42. https://doi.org/10.15207/JKCS.2019.10.5.035
- Apple Inc. (2019). https://www.apple.com/kr/apple-music/features
- M. Unger. (2015). Latent Context-aware Recommender Systems. RecSys' 15 Proceediing of the 9th ACM Conference on Recommender Systems, 383-386.
- M. Unger, A. Bar, B. Shapira & L. Rokach. (2016). Toward Latent Context-aware Recommendation Systems. Knowledge-Based Systems, 104(2016), 165-178. https://doi.org/10.1016/j.knosys.2016.04.020
- S. Rendle, Z. Gantner, C. Freudenthaler & L. Schmidt-Thieme. (2011). Fast Context-aware Recommendations with Factorization Machines. SIGIR' 11 Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, 635-644.
- J. M. Luna, M. Pechenizkiy, M. J. D. Jesus & S. Ventura. (2018). Mining Context-aware Association Rules using Grammar-based Genetic Programming. IEEE Transactions on Cybernetics, 48(11), 3030-3044. https://doi.org/10.1109/TCYB.2017.2750919
- M. Schedl. (2013). Ameliorating Music Recommendation: Integrating Music Content, Music Context, and User Context for Improved Music Retrieval and Recommendation. MoMM' 13 Proceedings of International Conference on Advances in Mobile Computing & Multimedia, 3-10.
- M. B. Magara, S. Ojo, S. Ngwira & T. Zuva. (2016). Mplist: Context-aware Music Playlist. 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, 309-316.
- N. M. Villegas, C. Sanchez, J. Diaz-Cely & G. Tamura. (2017). Characterizing Context-aware Recommender Systems: A Systematic Literature Review. Knowledge-based Systems, 140(15), 173-200.
- N. R. Kim, H. B. Bang, B. Kim, S. H. Lee & J. H. Lee. (2016). Research Trends in Context-aware Recommender Systems. Communications of KIISE, 34(6), 22-29.
- S. K. Gorakala. (2017). Building Recommendation Engines. Seoul: Acorn.
- J. Han, M. Kamber & J. Pei. (2015). Data Mining: Concepts and Techniques. UiWang: Acorn.
- M. Yao, B. Cao & J. Yin. (2011). Process Recommendation based on Association Rules and Transaction Context. 2011 International Conference on Internet Technology and Applications, 1-5.
- J. Bell. (2016). Machine Learning. Seoul: Gilbut.
- S. W. Kim. (2017). Step-by-step Android Programming. Seoul: Hanbit Academy.
- Naver Corp. (2019). A Music Genre Encyclopedia. https://terms.naver.com/list.nhn?cid=62892&categoryId=62892&so=st1.dsc&viewType=&categoryType=
- Kakao Corp. (2019) https://www.melon.com/
- I. K. Cheon. (2015). Android Programming. Paju: SaengNeung.