DOI QR코드

DOI QR Code

Non-Contact Injury Risk in Lower Extremity depending on Global Positioning System Variables among Female Field Hockey Players

여자필드하키선수의 Global Positioning System 변인에 따른 비접촉성 하지부상 발생위험도

  • Choi, Hokyung (Research Institute for Sports Sciences, Pukyong National University) ;
  • Kim, Eunkuk (Dept. of Physical Education, Korea National Sport University) ;
  • Park, Jong-Chul (Dept. of Sport Science, Korea Institute of Sport Science) ;
  • Kim, Taegyu (Dept. of Marine Sports, Pukyong National University)
  • 최호경 (부경대학교 스포츠과학연구소) ;
  • 김은국 (한국체육대학교 체육학과) ;
  • 박종철 (한국스포츠정책과학원 스포츠과학연구실) ;
  • 김태규 (부경대학교 해양스포츠학과)
  • Received : 2019.07.16
  • Accepted : 2019.09.20
  • Published : 2019.09.28

Abstract

This study aimed to qualify the amount of movement during game-based training and competition by using a GPS and to identify the non-contact injury risk in lower extremities for female field hockey enrolled in Korean national team. A total of 52 players were participated in this study and their GPS data collected during training and competition were averaged for 1 week and 4 weeks. And then, an injury risk in lower extremities was calculated for each category of the amount of movement in GPS variables that were related to non-contact injury. In forwards, the injury risk was the lowest in the moderate-low category of total distance covered and repeated high-intensity effort bout and the high category of high intensity distance for 1 week, but the risk decreased as the amount of high intensity distance increased for 4 weeks. In midfielders, the injury risk was the lowest in the low category of total distance covered, high intensity distance, repeated high-intensity effort bout and deceleration bout for 1 week.

본 연구는 여자 필드하키 선수를 대상으로 GPS를 활용하여 훈련 또는 시합 동안 발생하는 움직임을 정량화하고 비접촉성 하지부상과 관련된 변인에 대해 부상 발생위험도를 확인하고자 하였다. 골키퍼를 제외한 52명의 국가대표 선수를 대상으로 훈련 또는 시합 동안 발생하는 움직임을 GPS를 통해 측정한 후 각 변인에 대해 1주간과 4주간 평균을 산출하였고, 비접촉성으로 발생하는 하지부상 경험과 관련된 GPS변인에 대해 움직임 강도의 범위에 따른 하지부상 발생위험도를 산출하였다. 그 결과, 공격수는 1주간 총 뛴 거리와 높은 속도로 뛴 횟수의 약간 낮은 범위 및 높은 속도로 뛴 거리에서는 높은 범위의 부상 발생위험도가 가장 낮게 나타났고, 4주간의 높은 속도로 뛴 거리에서는 움직임의 강도가 증가함에 따라 위험도가 감소하였다. 미드필더는 1주간 총 뛴 거리와 높은 속도로 뛴 거리, 높은 속도로 뛴 횟수 및 감속 횟수의 낮은 범위에서 위험도가 가장 낮게 나타났고, 수비수는 하지부상 유무에 따른 움직임의 차이를 보이지 않았다.

Keywords

References

  1. M. Mohr, P. Krustrup & J. Bangsbo. (2005). Fatigue in soccer: a brief review. J Sports Sci. 23(6), 593-599. https://doi.org/10.1080/02640410400021286
  2. M. Spencer, D. Bishop, B. Dawson & C. Goodman. (2005). Physiological and metabolic responses of repeated-sprint activities. Sports Med. 35(12), 1025-1044. https://doi.org/10.2165/00007256-200535120-00003
  3. T. M. Theilen, W. Mueller-Eising, P. Wefers Bettink & U. Rolle. (2016). Injury data of major international field hockey tournaments. Br J Sports Med. 50(11), 657-660. https://doi.org/10.1136/bjsports-2015-094847
  4. T. J. Gabbett. (2010). GPS analysis of elite women's field hockey training and competition. J Strength Cond Res. 24(5), 1321-1324. https://doi.org/10.1519/JSC.0b013e3181ceebbb
  5. T. Kim, J. Cha & J. Park. (2016). Association between in-game performance parameters recorded via global positioning system and sports injuries to the lower extremities in elite female field hockey players. Cluster Computing, 21(1), 1069-1078. https://doi.org/10.1007/s10586-016-0690-6
  6. D. Macutkiewicz & C. Sunderland. (2011). The use of GPS to evaluate activity profiles of elite women hockey players during match-play. J Sports Sci. 29(9), 967-973. https://doi.org/10.1080/02640414.2011.570774
  7. A. D. White & N. MacFarlane. (2013). Time-on-pitch or full-game GPS analysis procedures for elite field hockey? Int J Sports Physiol Perform. 8(5), 549-555. https://doi.org/10.1123/ijspp.8.5.549
  8. T. J. Gabbett. (2004). Influence of training and match intensity on injuries in rugby league. J Sports Sci. 22(5), 409-417. https://doi.org/10.1080/02640410310001641638
  9. T. J. Gabbett & N. Domrow. (2007). Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci. 25(13), 1507-1519. https://doi.org/10.1080/02640410701215066
  10. M. J. Colby, B. Dawson, J. Heasman, B. Rogalski & T. J. Gabbett. (2014). Accelerometer and GPS-derived running loads and injury risk in elite Australian footballers. J Strength Cond Res. 28(8), 2244-2252. https://doi.org/10.1519/JSC.0000000000000362
  11. P. B. Gastin, D. Meyer & D. Robinson. (2013). Perceptions of wellness to monitor adaptive responses to training and competition in elite Australian football. J Strength Cond Res. 27(9), 2518-2526. https://doi.org/10.1519/JSC.0b013e31827fd600
  12. B. Rogalski, B. Dawson, J. Heasman & T. J. Gabbett. (2013). Training and game loads and injury risk in elite Australian footballers. J Sci Med Sport. 16(6), 499-503. https://doi.org/10.1016/j.jsams.2012.12.004
  13. C. Cummins, R. Orr, H. O'Connor & C. West. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 43(10), 1025-42. https://doi.org/10.1007/s40279-013-0069-2
  14. M. Waldron, C. Twist, J. Highton, P. Worsfold & M. Daniels. (2011). Movement and physiological match demands of elite rugby league using portable global positioning systems. J Sports Sci. 29(11), 1223-1230. https://doi.org/10.1080/02640414.2011.587445
  15. C. Brewer, B. Dawson, J. Heasman, G. Stewart & S. Cormack. (2010). Movement pattern comparisons in elite (AFL) and sub-elite (WAFL) Australian football games using GPS. J Sci Med Sport. 13(6), 618-623. https://doi.org/10.1016/j.jsams.2010.01.005
  16. L. J. Suarez-Arrones, L. J. Portillo, J. M. Gonzalez-Rave, V. E. Munoz & F. Sanchez. (2012). Match running performance in Spanish elite male rugby union using global positioning system. Isokinetics and Exercise Science, 20(2), 77-83. https://doi.org/10.3233/IES-2012-0444
  17. B. Cunniffe, W. Proctor, J. S. Baker & B. Davies. (2009). An evaluation of the physiological demands of elite rugby union using Global Positioning System tracking software. J Strength Cond Res. 23(4), 1195-1203. https://doi.org/10.1519/JSC.0b013e3181a3928b
  18. T. J. Gabbett & S. Ullah. (2012). Relationship between running loads and soft-tissue injury in elite team sport athletes. J Strength Cond Res. 26(4), 953-960. https://doi.org/10.1519/JSC.0b013e3182302023
  19. T. J. Gabbett & N. Domrow. (2005). Risk factors for injury in subelite rugby league players. Am J Sports Med. 33(3), 428-434. https://doi.org/10.1177/0363546504268407
  20. M. J. Cross, S. Williams, G. Trewartha, S. P. Kemp & K. A. Stokes. (2016). The influence of in-season training loads on injury risk in professional rugby union. International journal of sports physiology and performance. 11(3), 350-355. https://doi.org/10.1123/ijspp.2015-0187
  21. T. J. Gabbett. (2016). The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 50(5), 273-280. https://doi.org/10.1136/bjsports-2015-095788
  22. B. T. Hulin, T. J. Gabbett, P. Blanch, P. Chapman, D. Bailey & J. W. Orchard. (2014). Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 48(8), 708-712. https://doi.org/10.1136/bjsports-2013-092524
  23. B. T. Hulin, T. J. Gabbett, D. W. Lawson, P. Caputi & J. A. Sampson. (2016). The acute: chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 50(4), 231-236. https://doi.org/10.1136/bjsports-2015-094817
  24. M. K. Drew & C. F. Finch. (2016). The relationship between training load and injury, illness and soreness: a systematic and literature review. Sports Med. 46(6), 861-883. https://doi.org/10.1007/s40279-015-0459-8
  25. M. C. Varley & R. J. Aughey. (2013). Acceleration profiles in elite Australian soccer. Int J Sports Med. 34(1), 34-39. https://doi.org/10.1055/s-0032-1316315
  26. J. Hausler, M. Halaki & R. Orr. (2016). Application of global positioning system and microsensor technology in competitive rugby league match-play: a systematic review and meta-analysis. Sports Med. 46(4), 559-588. https://doi.org/10.1007/s40279-015-0440-6
  27. C. D. Economos et al. (2007). A community intervention reduces BMI z-score in children: Shape Up Somerville first year results. Obesity. 15(5), 1325-1336. https://doi.org/10.1038/oby.2007.155
  28. J. Ma et al. (2015). The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 100(3), 1018-1027. https://doi.org/10.1210/jc.2014-3096
  29. R. Bahr & I. Holme. (2003). Risk factors for sports injuries-a methodological approach. Br J Sports Med. 37(5), 384-392. https://doi.org/10.1136/bjsm.37.5.384
  30. D. B. Dwyer & T. J. Gabbett. (2012). Global positioning system data analysis: velocity ranges and a new definition of sprinting for field sport athletes. J Strength Cond Res. 26(3), 818-24. https://doi.org/10.1519/JSC.0b013e3182276555
  31. T. Soligard et al. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 50(17), 1030-1041. https://doi.org/10.1136/bjsports-2016-096581
  32. J. Windt & T. J. Gabbett. (2017). How do training and competition workloads relate to injury? The workload-injury aetiology model. Br J Sports Med. 51(5), 428-435. https://doi.org/10.1136/bjsports-2016-096040
  33. E. W. Banister & T. W. Calvert. (1980). Planning for future performance: implications for long term training. Can J Appl Sport Sci. 5(3), 170-176.
  34. E. W. Banister, T. W. Calvert, M. Savage & T. A. Bach. A systems model of training for athletic performance. Aust J Sports Med. 7(3), 57-61.
  35. F. E. Ehrmann, C. S. Duncan, D. Sindhusake, W. N. Franzsen & D. A. Greene. GPS and Injury Prevention in Professional Soccer. J Strength Cond Res. 30(2), 360-367. https://doi.org/10.1519/JSC.0000000000001093