DOI QR코드

DOI QR Code

알칼라인 조건에서의 산소발생반응을 위한 N-doped NiO 촉매

Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions

  • 이진구 (세인트 앤드류 대학 화학과) ;
  • 전옥성 (연세대학교 화공생명공학과) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Lee, Jin Goo (School of Chemistry, University of St Andrews) ;
  • Jeon, Ok Sung (Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shul, Yong Gun (Chemical and Biomolecular Engineering, Yonsei University)
  • 투고 : 2019.01.28
  • 심사 : 2019.04.28
  • 발행 : 2019.10.01

초록

알칼라인 조건에서의 산소발생 반응(oxygen-evolution reaction: OER)은 다양한 에너지 시스템에 중요한 반응으로 여겨지고 있다. 큰 overpotential을 감소시키기 위해 다양한 촉매들이 개발되고 있으며, 그 중 NiO는 높은 활성도에 대한 가능성으로 인해 연구가 활발하게 진행되고 있다. 촉매의 표면에서 OER에 대한 메커니즘은 정확하게 규명되지는 않았지만, 산화물 촉매에서 Ni 또는 O vacancy와 같은 결함들은 많은 전기화학반응에서 활성점으로 여겨진다. 따라서, 본 연구에서는 nitrogen을 ethylenediamine을 이용하여 NiO의 O위치에 치환하여 Ni vacancy를 형성하고 그로 인해서 OER의 activity와 내구성에 어떠한 영향을 미치는지에 대해 분석해 보았다.

Oxygen-evolution reaction (OER) in alkaline media has been considered as a key process for various energy applications. Many types of catalysts have been developed to reduce high overpotential in OER, such as metal alloys, metal oxides, perovskite, or spinel. Nickel oxide (NiO) has high potential to increase OER activity according to volcano plots. The exact mechanisms for OER has not been discovered, but defects such as cation or anion vacancy typically act as an active site for diverse electrochemical reactions. In this study, nitrogen was doped into NiO by using ethylenediamine for formation of Ni vacancy, and the effects of N doping on OER activity and stability was studied.

키워드

참고문헌

  1. Doyle, R. L. and Lyons, M. E. G., Chapter 2 The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design, Springer International Publishing Switzerland 2016, DOI 10.1007/978-3-319-29641-8_2
  2. Koper, M. T. M. J., "Thermodynamic Theory of Multi-electron Transfer Reactions: Implications for Electrocatalysis," Electroanal. Chem., 660, 254(2011). https://doi.org/10.1016/j.jelechem.2010.10.004
  3. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. and Shao-Horn, Y., "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles," Science, 334, 1383(2011). https://doi.org/10.1126/science.1212858
  4. Yagi, S., Yamada, I., Tsukasaki, H., Seno, A., Murakami, M., Fujii, H., Chen, H., Umezawa, N., Abe, H., Nishiyama, N. and Mori, S., "Covalency-reinforced Oxygen Evolution Reaction Catalyst," Nat. Commun., 6, 8249(2015). https://doi.org/10.1038/ncomms9249
  5. Chen, C.-F., King, G., Dickerson, R. M., Papin, P. A., Gupta, S., Kellogg, W. R. and Wu, G., "Oxygen-deficient $BaTiO_{3-x}$ Perovskite Oxides as an Efficient Bifunctional Oxygen Electrocatalyst," Nano. Energy., 13, 423(2015). https://doi.org/10.1016/j.nanoen.2015.03.005
  6. Risch, M., Grimaud, A., May, K. J., Stoerzinger, K. A., Chen, T. J., Mansour, A. N. and Shao-Horn, Y., "Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS," J. Phys. Chem. C 117, 8628(2013). https://doi.org/10.1021/jp3126768
  7. Bockris, J. O. M. and Otagawa, T. J., "The Electrocatalysis of Oxygen Evolution on Perovskites," Electrochem. Soc., 131, 290(1984). https://doi.org/10.1149/1.2115565
  8. May, K. J., Carlton, C. E., Stoezinger, K. A., Risch, M., Suntivich, J., Lee, Y.-L., Grimaud, A. and Shao-Horn, Y. J., "Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts," Phys. Chem. Lett., 3, 3264(2012). https://doi.org/10.1021/jz301414z
  9. Carbonio, R. E., Fierro, C., Tryk, D., Scherson, D. and Yeager, E. J., "Perovskite-type oxides: Oxygen electrocatalysis and Bulk Structure," Power Sources, 22, 387(1988). https://doi.org/10.1016/0378-7753(88)80032-6
  10. Grimaud, A., May, K. J., Carlton, C. E., Lee, Y.-L., Risch, M., Hong, W. T., Zhou, J. and Shao-Horn, Y., "Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution," Nat. Commun., 4, 2439(2013). https://doi.org/10.1038/ncomms3439
  11. Grimaud, A., Carlton, C. E., Risch, M., Hong, W. T., May, K. J. and Shao-Horn, Y. J., "Oxygen Evolution Activity and Stability of $Ba_6Mn_5O_{16}$, $Sr_4Mn_2CoO_9$, and $Sr_6Co_5O_{15}$: The Influence of Transition Metal Coordination," Phys. Chem. C, 117, 25926(2013). https://doi.org/10.1021/jp408585z
  12. Cheng, Y. and Jiang, S. P., "Advances in Electrocatalysts for Oxygen Evolution Reaction of Water Electrolysis-from Metal Oxides to Carbon Nanotubes," Progress in Natural Science: Materials International 25, 545-553(2015). https://doi.org/10.1016/j.pnsc.2015.11.008
  13. Favaro, M., Valero-Vidal, C., Eichhorn, J., Toma, F. M., Ross, P. N., Yano, J. Liu Z. and Crumlin, E. J., "Elucidating the Alkaline Oxygen Evolution Reaction Mechanism on Platinum," J. Mater. Chem. A, 5, 11634(2017). https://doi.org/10.1039/C7TA00409E
  14. Andersen, N. I., Serov, A. and Atanassov, P., "Metal Oxides/CNT Nano-composite Catalysts for Oxygen Reduction/oxygen Evolution in Alkaline Media," Applied Catalysis B: Environmental, 163, 623-627(2015). https://doi.org/10.1016/j.apcatb.2014.08.033
  15. Jiang, N., You, B., Sheng, M. and Sun, Y., "Electrodeposited Cobalt-phosphorous-derived Films as Competent Bifunctional Catalysts for Overall Water Splitting," Angew. Chem., 127, 6349-6352(2015). https://doi.org/10.1002/ange.201501616
  16. Chang, J., Xiao, Y., Xiao, M., Ge, J., Liu, C. and Xing, W., "Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution," ACS Catal., 5, 6874-6878(2015). https://doi.org/10.1021/acscatal.5b02076
  17. Zhu, Y., Zhou, W., Chen, Z.-G., Chen, Y., Su, C., Tade, M. O. and Shao, Z., "$SrNb_{0.1}Co_{0.7}Fe_{0.2}O_{3-d}$ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution," Angew. Chem., 127, 3969-3973(2015). https://doi.org/10.1002/ange.201408998
  18. Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J. and Wu, G., "Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media," Nano Today, 11, 601-625 (2016). https://doi.org/10.1016/j.nantod.2016.09.001
  19. Cao, R., Lee, J.-S., Liu, M. and Cho, J., "Recent Progress in Non-Precious Catalysts for Metal-Air Batteries," Adv. Energ. Mater., 2, 816-829(2012). https://doi.org/10.1002/aenm.201200013
  20. Wang, L., Zhao, X., Lu, Y., Xu, M., Zhang, D., Ruoff, R. S., Stevenson, K. J. and Goodenough, J. B., "$CoMn_2O_4$ Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries," Electrochem. Soc., 158, A1379-A1382(2011). https://doi.org/10.1149/2.068112jes
  21. Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martinez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Norskov, J. K. and Rossmeisl, J., "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem 3, 1159-1165(2011). https://doi.org/10.1002/cctc.201000397
  22. Schulze, M. and Gulzow, E., "Degradation of Nickel Anodes in Alkaline Fuel Cells," Journal of Power Sources, 127, 252-263(2004). https://doi.org/10.1016/j.jpowsour.2003.09.021
  23. Chung, H. T., Won, J. H. and Zelenay, P., "Active and Stable Carbon Nanotube/nanoparticle Composite Electrocatalyst for Oxygen Reduction," Nature Communications, 4, 1922(2013). https://doi.org/10.1038/ncomms2944
  24. Jiang, J., Liu, Q., Zeng, C. and Ai, L., "Cobalt/molybdenum Carbide@ N-doped Carbon as a Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions," J. Mater. Chem. A, 5, 16929(2017). https://doi.org/10.1039/C7TA04893A
  25. Liu, X. and Dai, L., "Carbon-based Metal-free Catalysts," Nature Reviews Materials, 1, 16064(2016). https://doi.org/10.1038/natrevmats.2016.64
  26. Hu, J., Zhu, K., Chen, L., Yang, H., Li, Z., Suchopar, A. and Richards, R., "Preparation and Surface Activity of Single-Crystalline NiO(111) Nanosheets with Hexagonal Holes: A Semiconductor Nanospanner," Adv. Mater., 20, 267(2008). https://doi.org/10.1002/adma.200701389
  27. Lin, F., Gillaspie, D. T., Dillon, A. C., Richards, R. M. and Engtrakul, C., "Nitrogen-doped Nickel Oxide Thin Films for Enhanced Electrochromic Applications," Thin Solid Films, 527, 26-30(2013). https://doi.org/10.1016/j.tsf.2012.12.031
  28. Chawla, A. K., Singhal, S., Cupta, H. O. and Chandra, R., "Influence of Nitrogen Doping on the Sputter-deposited $WO_3$ Films," Thin Solid Films, 518, 1430(2009). https://doi.org/10.1016/j.tsf.2009.09.060
  29. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science 293, 269(2001). https://doi.org/10.1126/science.1061051
  30. Soriano, L., Gutierrez, A., Preda, I., Palacin, S., Sanz, J. M., Abbate, M., Trigo, J. F., Vollmer, A. and Bressler, P. R., "Nitrogen-vacancy center in Diamond: Model of the Electronic Structure and Associated Dynamics," Phys. Rev. B, 74 (2006).