DOI QR코드

DOI QR Code

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple

안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과

  • Lee, Wonmi (Graduate school of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate school of Energy and Environment, Seoul National University of Science and Technology)
  • 이원미 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Received : 2019.06.18
  • Accepted : 2019.07.16
  • Published : 2019.10.01

Abstract

n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

본 연구에서는 유기물인 안트라퀴논(AQDS)와 템포(TEMPO)를 활물질로 사용하고 N 중성 전해질 기반 수계 유기레독스 흐름전지 성능이 멤브레인에 따라 어떻게 영향을 받는지 분석하였다. 안트라퀴논과 템포 모두 중성 전해질인 염화칼륨(KCl) 전해질에 대해 높은 전자전달성(0.068 V의 산화 반응 및 환원 반응의 피크 전위차) 및 셀전압(1.17 V)을 얻을 수 있었다. 성능비교를 위해 사용한 멤브레인으로, 상용 양이온 교환막 중 하나인 Nafion 212를 사용하였을 때, 0.1 M 활물질을 1 M 염화칼륨 전해질에 용해해서 작동한 레독스 흐름전지 완전지 테스트를 통해, 전류효율 97%, 전압 효율 59%의 성능을 나타내었지만, 방전 용량(discharge capacity)은 4 사이클에서 $0.93Ah{\cdot}L^{-1}$로 이론 용량($2.68Ah{\cdot}L^{-1}$)의 35%를 도달하였으며, 총 10사이클 동안 방전 용량의 용량 손실율(capacity loss rate)은 $0.018Ah{\cdot}L^{-1}/cycle$ 이다. 그 외에도 Nafion 117 멤브레인, SELEMION CSO 멤브레인을 사용하여 단전지 성능을 테스트하였을 때, 오히려 저항 증가 및 투과 유도로 인해 더 큰 용량 손실을 이끌었다.

Keywords

References

  1. Christwardana, M., Chung, Y. and Kwon, Y., "A Correlation of Results Measured by Cyclic Voltammogram and Impedance Spectroscopy in Glucose Oxidase Based Biocatalysts," Korean J. Chem. Eng., 34(11), 3009-3016(2017). https://doi.org/10.1007/s11814-017-0213-z
  2. Jo, M. S. and Cho, J. S., "Application of Hierarchically Porous $Fe_2O_3$ Nanofibers for Anode Materials of Lithium-ion Batteries," Korean J. Chem. Eng. Res., 57(2), 267-273(2019).
  3. Dai, Y. and Zhu, X., "Improved Dielectric Properties and Energy Density of PVDF Composites Using PVP Engineered $BaTiO_3$ Nanoparticles," Korean J. Chem. Eng., 35(7), 1570-1576(2018). https://doi.org/10.1007/s11814-018-0047-3
  4. Ryu, J. H., "Operation Planning of Energy Storage System Considering Multiperiod Energy Supplies and Demands," Korean J. Chem. Eng., 35(2), 328-336(2018). https://doi.org/10.1007/s11814-017-0273-0
  5. Shabanian, S. R., Edrisi, S. and Khoram, F. V., "Prediction and Optimization of Hydrogen Yield and Energy Conversion Efficiency in a Non-catalytic Filtration Combustion Reactor for Jet A and Butanol Fuels," Korean J. Chem. Eng., 34(8), 2188-2197(2017). https://doi.org/10.1007/s11814-017-0134-x
  6. Kim, S. Y. and Kim, H., "Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries," Korean J. Chem. Eng. Res., 57(3), 408-412(2019).
  7. Lim, W. G., Jo, C., Lee, J. and Hwang, D. S., "Simple Modification with Amine-and Hydroxyl-group Rich Biopolymer on Ordered Mesoporous Carbon/sulfur Composite for Lithium-sulfur Batteries," Korean J. Chem. Eng., 35(2), 579-586(2018). https://doi.org/10.1007/s11814-017-0302-z
  8. Lee, J. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  9. Lee, W., Jo, C., Youk, S., Shin, H. Y., Lee, J., Chung, Y. and Kwon, Y., "Mesoporous Tungsten Oxynitride as Electrocatalyst for Promoting Redox Reactions of Vanadium Redox Couple and Performance of Vanadium Redox Flow Battery," Appl. Surf. Sci., 429, 187-195(2018). https://doi.org/10.1016/j.apsusc.2017.07.022
  10. Jung, M., Lee, W., Noh, C., Konovalova, A., Yi, G. S., Kim, S., Kwon, Y. and Henkensmeier, D., "Blending Polybenzimidazole with an Anion Exchange Polymer Increases the Efficiency of Vanadium Redox Flow Batteries," J. Memb. Sci., 580, 110-116(2019). https://doi.org/10.1016/j.memsci.2019.03.014
  11. Jung, H. Y., Cho, M. S., Sadhasivam, T., Kim, J. Y., Roh, S. H. and Kwon, Y., "High Ionic Selectivity of Low Permeable Organic Composite Membrane with Amphiphilic Polymer for Vanadium Redox Flow Batteries," Solid State Ion., 324, 69-76(2018). https://doi.org/10.1016/j.ssi.2018.06.009
  12. Struzynska-Piron, I., Jung, M., Maljusch, A., Conradi, O., Kim, S., Jang, J. H., Kim, H., Kwon, Y., Nam, S. W. and Henkensmeier, D., "Imidazole Based Ionenes, Their Blends with PBI-OO and Applicability as Membrane in a Vanadium Redox Flow Battery," Eur. Polym. J., 96, 383-392(2017). https://doi.org/10.1016/j.eurpolymj.2017.09.031
  13. Jung, H. Y., Jeong, S. and Kwon, Y., "The Effects of Different Thick Sulfonated Poly(ether ether ketone) Membranes on Performance of Vanadium Redox Flow Battery," J. Electrochem. Soc., 163(1), A5090-A5096(2016). https://doi.org/10.1149/2.0121601jes
  14. Jung, M., Lee, W., Krishnan, N. N., Kim, S., Gupta, G., Komsiyska, L., Harms, C., Kwon, Y. and Henkensmeier, D., "Porous-Nafion/PBI Composite Membranes and Nafion/PBI Blend Membranes for Vanadium Redox Flow Batteries," Appl. Surf. Sci., 450, 301-311 (2018). https://doi.org/10.1016/j.apsusc.2018.04.198
  15. Noh, C., Jung, M., Henkensmeier, D., Nam, S. W. and Kwon, Y., "Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses," ACS Appl. Mater. Interfaces, 9(42), 36799-36809(2017). https://doi.org/10.1021/acsami.7b10598
  16. Noh, C., Lee, C., Chi, W. S., Chung, Y., Kim, J. and Kwon, Y., "Vanadium Redox Flow Battery Using Electrocatalyst Decorated with Nitrogen-Doped Carbon Nanotubes Derived from Metal-Organic Frameworks," J. Electrochem. Soc., 165(7), A1388-A1399(2018). https://doi.org/10.1149/2.0621807jes
  17. Lee, W., Permatasari, A., Kwon B. W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Anthraquinone- 2,7-disulfonic Acid Disodium Salt and Potassium Iodide Redox Couple," Chem. Eng. J., 358, 1438-1445(2019). https://doi.org/10.1016/j.cej.2018.10.159
  18. Yang, B., Hoober-Burkhardt, L., Wang, F., Prakash, G. S. and Narayanan, S. R., "An Inexpensive Aqueous Flow Battery for Large-scale Electrical Energy Storage Based on Water-soluble Organic Redox Couples," J. Electrochem. Soc., 161(9), A1371-A1380(2014). https://doi.org/10.1149/2.1001409jes
  19. Lee, W., Kwon, B. W. and Kwon, Y., "Effect of Carboxylic Aciddoped Carbon Nanotube Catalyst on the Performance of Aqueous Organic Redox Flow Battery Using the Modified Alloxazine and Ferrocyanide Redox Couple," ACS Appl. Mater. Interfaces, 10(43), 36882-36891(2018). https://doi.org/10.1021/acsami.8b10952
  20. Lee, W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple," Korean Chem. Eng. Res., 56(6), 890-894(2018).
  21. Lin, K., Gomez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J. and Gordon, R. G., "A Redox-flow Battery with an Alloxazine-based Organic Electrolyte," Nat. Energy, 1(9), 16102(2016). https://doi.org/10.1038/nenergy.2016.102
  22. Lee, W., Chung, K. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery using Anthraquinone and Benzoquinone Redox Couple with ammonium chloride electrolyte," Korean Chem. Eng. Res., 57, 239-243(2019).
  23. Janoschka, T., Martin, N., Hager, M. D. and Schubert, U. S., "An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System," Angew. Chem. Int. Ed., 55(46), 14427-14430(2016). https://doi.org/10.1002/anie.201606472
  24. Chang, Z., Henkensmeier, D. and Chen, R., "Shifting Redox Potential of Nitroxyl Radical by Introducing an Imidazolium Substituent and Its Use in Aqueous Flow Batteries," J. Power Sources, 418, 11-16(2019). https://doi.org/10.1016/j.jpowsour.2019.02.028
  25. Jeong, S., Kim, L. H., Kwon, Y. and Kim, S., "Effect of Nafion Membrane Thickness on Performance of Vanadium Redox Flow Battery," Korean J. Chem. Eng., 31(11), 2081-2087(2014). https://doi.org/10.1007/s11814-014-0157-5