DOI QR코드

DOI QR Code

활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon

  • 이종집 (공주대학교 화학공학부)
  • Lee, Jong Jib (Division of Chemical Engineering, Kongju National University)
  • 투고 : 2019.04.22
  • 심사 : 2019.06.26
  • 발행 : 2019.10.01

초록

수용액으로부터 활성탄에 대한 아닐린 블루의 흡착 평형, 동역학 및 열역학적 특성을 초기농도, 접촉시간과 온도를 흡착변수로 하여 조사하였다. 아닐린 블루의 등온흡착은 Langmuir, Freundlich, Redlich-Peterson, Temkin 및 Dubinin-Radushkevich 모델을 통해 해석하였다. Langmuir 모델이 다른 모델들 보다 등온 데이터에 더 잘 맞았다. 평가된 Langmuir 분리계수($R_L=0.036{\sim}0.068$)는 활성탄에 의한 아닐린 블루의 흡착 공정이 효과적인 처리방법이 될 수 있음을 나타냈다. 흡착속도상수는 유사일차속도 모델, 유사이차속도 모델 및 입자내 확산 모델에 적용하여 구하였다. 활성탄에 대한 아닐린 블루의 흡착속도실험 결과는 유사이차 반응속도식에 잘 따랐다. 흡착 메카니즘은 입자내 확산 모델에 의해 경막 확산과 입자내 확산의 두 단계로 평가되었다. 흡착공정에 대한 깁스 자유에너지, 엔탈피 및 엔트로피 변화와 같은 열역학 파라미터들이 평가되었다. 엔탈피 변화(48.49 kJ/mol)은 흡착공정이 물리흡착이고 흡열반응임을 알려주었다. 깁스 자유 에너지는 온도가 올라갈수록 감소하였기 때문에 흡착반응은 온도가 올라갈수록 자발성이 더 높아졌다. 등량흡착열은 흡착제 표면의 에너지 불균일성 때문에 흡착제와 흡착질 사이에 상호작용이 있음을 나타내었다.

Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

키워드

참고문헌

  1. Akar, T., Demir, T. A., Kiran, I., Ozcan, A., Ozcan A. S. and Tunali, S., "Biosorption Potential of Neurospora Crassa Cells for Decolorization of Acid Red 57 (AR57) Dye," J. Chem. Technol. Biotechnol., 81(7), 1110-1106(2006). https://doi.org/10.1002/jctb.1462
  2. Qi, J., Li, Z., Guo, Y. and Xu, H., "Adsorption of Phenolic Compounds on Micro- and Mesoporous Rice Husk-Based Active Carbons," Mater. Chem. Phys., 87(1), 96-101(2004). https://doi.org/10.1016/j.matchemphys.2004.05.008
  3. Lee, J. J., "Study on Equilibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite," Korean Chem. Eng. Res., 56(1), 112-118(2018). https://doi.org/10.9713/kcer.2018.56.1.112
  4. Park, H. N., Choi, H. A. and Won, S. W., "Adsorption Characteristics of Coconut Shell-based Granular Activated Carbon on a Basic Dye Black Blue 3," Korean Chem. Eng. Res., 56(1), 96-102(2018). https://doi.org/10.9713/kcer.2018.56.1.96
  5. Lee, M. G., Yun, J. W. and Suh, J., "Adsorption Characteristics of Non-degradable Eosin Y Dye by Carbon Nano Tubes," Korean Chem. Eng. Res., 55(6), 771-777(2017). https://doi.org/10.9713/kcer.2017.55.6.771
  6. Yang, J. W. and Kim, J.-H., "Evaluation of Adsorption Characteristics of 2-Picoline onto Sylopute," Korean Chem. Eng. Res., 57(2), 210-218(2019).
  7. Carolina Biological Supply Co., "Anilin Blue, Sodium salt SDS," (2019).
  8. Panizz,a M. and Cerisola, G., "Removal of Colour and COD from Wastewater Containing Acid Blue 22 by Electrochemical Oxidation," J. Hazard Mater., 153(1-2), 83-88(2008). https://doi.org/10.1016/j.jhazmat.2007.08.023
  9. Kumar, M. and Tamilarasan, R., "Modeling Studies: Adsorption of Aniline Blue by Using Prosopis Juliflora Carbon/Ca/Alginate Polymer Composite Beads," Carbohydr. Polym., 92(2), 2171-2180 (2013). https://doi.org/10.1016/j.carbpol.2012.11.076
  10. Unuabonah, E. I., Adebowale, K. O. and Dawodu, F. A., "Equilibrium, Kinetic and Sorber Design on the Adsorption of Aniline Blue Dye by Sodium Tetraborate-Modified Kolin Clay Adsorbent," J. Hazard Mater., 157(2-3), 397-409(2008). https://doi.org/10.1016/j.jhazmat.2008.01.047
  11. Hasani, S., Ardejani, F. D. and Olya, M. E., "Equilibrium and Kinetic Studies of Azo Dye(Basic Red 18) Adsorption onto Montmorillonate: Numerical Simulation and Laboratory Experiments," Korean J. Chem. Eng., 34(8), 2265-2274(2017). https://doi.org/10.1007/s11814-017-0110-5
  12. Lee, J. J., "Study on Isotherm, Kinetic, Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon," Appl. Chem. Eng., 30(2), 190-197(2019). https://doi.org/10.14478/ACE.2019.1001
  13. Wu, F.-C., LIui, B.-L., Wu, K.-T. and Tsengi, R.-L., "A New Linear Form Analysis of Redlich-Peterson Isotherm Equation for the Adsorptions of Dyes," Chem. Eng. J., 162(1), 21-27(2010). https://doi.org/10.1016/j.cej.2010.03.006
  14. Kim, Y.-S. and Kim, J.-H., "Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel onto Sylopute," J. Chem. Thermodyn., 130, 104-113(2019). https://doi.org/10.1016/j.jct.2018.10.005
  15. Fu, J. Zhu, J. Wang, Z. Wang, Y., Wang, S. Yan, R. and Xu, Q., "Highly-Efficient and Selective Adsorption of Anionic Dyes onto Hollow Polymer Microcapsules Having a High Surface-Density of Amino Groups: Isotherms, Kinetics, Thermodynamics and Mechanism," J. Coll. Intrf. Sci., 542, 123-135(2019). https://doi.org/10.1016/j.jcis.2019.01.131
  16. Hamza, W., Dammak, N., Hadjltaief, H. B., Eloussaief, M. and Benzina, M., "Sono-assisted Adsorption of Cristal Violet Dye onto Tunisian Smectite Clay: Characterization, Kinetics and Adsorption Isotherms," Ecotoxicol. Environ. Safe., 163, 365-371(2018). https://doi.org/10.1016/j.ecoenv.2018.07.021
  17. Saruchi and Kumar, V., "Adsorption Kinetics and Isotherms for the Removal of Rhodamine B Dye and $Pb^{+2}$ Ions from Aqueous Solutions by a Hybrid Ion-Exchanger," Arabian J. Chem., 12(3), 316-329(2019). https://doi.org/10.1016/j.arabjc.2016.11.009
  18. Rajabi, M., Mahanpoor, K. and Morami, O., "Preparation of PMMA/GO and PMMA/GO-$Fe_3O_4$ Nanocomposites for Malachite Green Dye Adsorption: Kinetic and Thermodynamic Studies," Composite Part B Eng., 167, 544-555(2019). https://doi.org/10.1016/j.compositesb.2019.03.030
  19. Gercel, O., Ozcan, A., Ozcan, A. S. and Gercel, H. F., "Preparation of Activated Carbon from a Renewable Bio-Plant of Euphorbia Rigida by $H_2SO_4$ Activation ant Its Adsorption Behavior in Aqueous Solutions," Appl. Surf. SCI., 253(11), 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  20. Wu, F. C., Tseng, R. L. and Juang, R. S., "Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics," Chem. Eng. J., 153(1-3), 1-8 (2009). https://doi.org/10.1016/j.cej.2009.04.042
  21. A, U. I., Abdulraheem, G., Bala, S., Muhammad, S. and Abdullahi, M., "Kinetics, Equilibrium and Thermodynamics Sudies of CI Reactive Blue 19 Dye Adsorption on Coconut Shell Based Activated Carbon," Int. Biodeterior. Biodegradation, 102, 265-273(2015). https://doi.org/10.1016/j.ibiod.2015.04.006
  22. Sato, T., Abe, S. Ito, S. and Abe, T., "Silk Fibroin Fiber for Selective Palladium Adsorption: Kinetic, Isothermal and Thermodynamic Properties," J. Environ. Chem. Eng., 7(2), 521-530 (2019).
  23. Bayramoglu, G. and Arica, M. Y., "Adsorption of Congo Red Dye by Native Amine and Carboxyl Modified Biomass of Funalia Trogii: Isotherms, Kinetics and Thermodynamics Mechanisms," Korean J. Chem. Eng., 35(6), 1303-1311(2018). https://doi.org/10.1007/s11814-018-0033-9
  24. Jung, K.-W., Choi, B. H., Hwang, M.-J., Choi, J.-W., Lee, S.-H., Chang, J.-S. and Ahn, K.-H., "Adsorptive Removal of Anionic Azo Dye from Aqueous Solution Using Activated Carbon Derived from Extracted Coffee Residues," J. Cleaner Product., 166, 360-368(2017). https://doi.org/10.1016/j.jclepro.2017.08.045