DOI QR코드

DOI QR Code

Electrochemical Properties of Natural Graphite coated with PFO-based Pitch for Lithium-ion Battery Anode

리튬이차전지 음극용 석유계 피치로 코팅된 천연 흑연의 전기화학적 특성

  • Kim, Geun Joong (Department of Chemical Engineering, Chungbuk National University) ;
  • Jo, Yoon Ji (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2019.03.12
  • Accepted : 2019.05.06
  • Published : 2019.10.01

Abstract

The electrochemical properties of pitch-coated natural graphite(NG) were investigated as an anode for lithium-ion batteries. The anode materials were prepared by heat-treatment of mixture of NG and petroleum pitch at $1000^{\circ}C$. The pitches with various softening points were used as carbon precursor. The physical properties of anode materials were analyzed by TGA, SEM, PSA and BET. As the softening point increased, the thickness of the coating layer increased and the specific surface area decreased. The electrochemical performances were investigated by initial charge/discharge efficiency, cycle stability, cyclic voltammetry, rate performance and electrochemical impedance spectroscopy. The carbon-coated NG using pitch with softening points of $250^{\circ}C$ showed an initial discharge capacity of 361 mAh/g and a coulombic efficiency of 92.6%. Also, the rate performance(5 C/0.2 C) was 1.6 times higher than that of NG, and it had a capacity retention (90%) after 50 cycles at 0.5 C.

리튬이차전지용 음극재로서 피치로 코팅된 천연흑연의 전기화학적 특성이 조사되었다. 천연흑연과 피치의 혼합물을 $1000^{\circ}C$에서 소성하여 음극재를 제조하였다. 다양한 연화점의 피치가 탄소전구체로 사용되었다. 제조된 음극재의 물리적 특성은 TGA, SEM, PSA 및 BET로 분석하였다. 피치의 연화점이 증가할수록 코팅 층의 두께가 증가하였고, 비표면적이 감소하였다. 초기 충 방전 효율, 사이클, 순환전압전류, 속도 특성 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. 연화점 $250^{\circ}C$의 피치로 탄소 코팅된 천연흑연은 초기 방전용량 361 mAh/g과 쿨롱 효율 92.6%을 보였다. 또한 출력 특성(5 C/0.2 C)은 코팅되지 않은 천연흑연에 비해 1.6배 향상되었으며, 0.5 C로 진행된 사이클 테스트에서 50 사이클 후 90%의 용량 유지율을 나타내었다.

Keywords

References

  1. Wissler, M., "Graphite and Carbon Powders for Electrochemical Applications," J. Power Sources, 156(2), 142-150(2006). https://doi.org/10.1016/j.jpowsour.2006.02.064
  2. Kim, T., Lee, J. and Lee, K., "Full Graphitization of Amorphous Carbon by Microwave Heating," RSC Adv., 6(29), 24667-24674 (2016). https://doi.org/10.1039/C6RA01989G
  3. Shim, J. and Striebel, K. A., "Effect of Electrode Density on Cycle Performance and Irreversible Capacity Loss for Natural Graphite Anode in Lithium-ion Batteries," J. Power Sources, 119-121, 934-937(2003). https://doi.org/10.1016/S0378-7753(03)00235-0
  4. Ohta, N., Nagaoka, K., Hoshi, Z., Bitoh, S. and Inagaki, M., "Carbon-coated Graphite for Anode of Lithium Ion Rechargeable Batteries : Graphite Substrates for Carbon Coating," J. Power Sources, 194(2), 985-990(2009). https://doi.org/10.1016/j.jpowsour.2009.06.013
  5. Wu, Y. P., Jiang, C., Wan, C. and Holze, R., "Anode Materials for Lithium Ion Battery by Oxidative Treatment of Common Natural Graphite," Solid State Ionics, 156(3), 283-290(2003). https://doi.org/10.1016/S0167-2738(02)00680-X
  6. Han, Y. J., Kim, J., Yeo, J. S., An, J. C., Hong, I. P., Nakabayashi, K., Miyawaki, J., Jung, J. D. and Yoon, S. H., "Coating of Graphite Anode with Coal Tar Pitch as An Effective Precursor for Enhancing the Rate Performance in Li-ion Batteries: Effects of Composition and Softening Points of Coal Tar Pitch," CARBON, 94, 432-438(2015). https://doi.org/10.1016/j.carbon.2015.07.030
  7. Jo, Y. J. and Lee, J. D., "Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent," Korean Chem. Eng. Res., 57(1), 5-10(2019).
  8. Park, Y., Hong, Y. K. and Lee, K., "Effect of Amorphous Carbon Coating on Low-purity Natural Graphite as An Anode Active Material for Lithium-ion Batteries," Journal of Ceramic Processing Research, 18(7), 488-493(2017). https://doi.org/10.36410/JCPR.2017.18.7.488
  9. Lee, H., Baek, J., Jang, S., Lee, S., Hong, S., Lee, K. and Kim, M., "Characteristics of Carbon-coated Graphite Prepared from Mixture of Graphite and Polyvinylchloride as Anode Materials for Lithium Ion Batteries," J. Power Sources, 101(2), 206-212(2001). https://doi.org/10.1016/S0378-7753(01)00671-1
  10. Nozaki, H., Nagaoka, K., Hoshi, K., Ohta, N. and Inagaki, M., "Carbon-coated Graphite for Anode of Lithium Ion Rechargeable Batteries: Carbon Coating Conditions and Precursors," J. Power Sources, 194(1), 486-493(2009). https://doi.org/10.1016/j.jpowsour.2009.05.040
  11. Han, Y. and Lee, J., "Improvement on the Electrochemical Characteristics of Graphite Anodes by Coating of the Pyrolytic Carbon Using Tumbling Chemical Vapor Deposition," Electrochimica Acta, 48(8), 1073-1079(2003). https://doi.org/10.1016/S0013-4686(02)00845-9
  12. Kim, B. H., Kim, J. H., Kim, J. G., Bae, M. J., Im, J. S., Lee, C. W. and Kim, S., "Electrochemical and Structural Properties of Lithium Battery Anode Materials by using a Molecular Weight Controlled Pitch derived from Petroleum Residue," J. Ind. Eng. Chem., 41, 1-9(2016). https://doi.org/10.1016/j.jiec.2016.07.006
  13. Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/$SiO_2$," Appl. Chem. Eng., 25(6), 592-597(2014). https://doi.org/10.14478/ace.2014.1094
  14. Kim, J. G., Kim, J. H., Song, B., Lee, C. W. and Im, J. S., "Synthesis and Its Characterization of Pitch from Pyrolyzed Fuel Oil (PFO)," J. Ind. Eng. Chem., 36, 293-297(2016). https://doi.org/10.1016/j.jiec.2016.02.014
  15. Han, Y. J., Hwang, J. U., Kim, K. S., Kim, J. H., Lee, J. D. and Im, J. S., "Optimization of the Preparation Conditions for Pitch Based Anode to Enhance the Electrochemical Properties of LIBs," J. Ind. Eng. Chem., 73, 241-247(2019). https://doi.org/10.1016/j.jiec.2019.01.031
  16. Dahn, J. R., Sileigh, A. K., Reimers, J. N., Zhong, Q. and Way, B. M., "Dependence of the Electrochemical Intercalation of Lithium in Carbons on the Crystal Structure of the Carbon," Electrochimica Acta, 38(9), 1179-1191(1993). https://doi.org/10.1016/0013-4686(93)80048-5
  17. Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E. and Novak, P., "High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries," J. Electrochem. Soc., 152(2), A474-A481(2005). https://doi.org/10.1149/1.1851055
  18. Wan, C., Li, H., Wu, M. and Zhao, C., "Spherical Natural Graphite Coated by a Thick Layer of Carbonaceous Mesophase for Use as An Anode Material in Lithium ion Batteries," J. Appl. Electrochem., 39(7), 1081-1086(2008). https://doi.org/10.1007/s10800-008-9761-6
  19. Yoshio, M., Wang, H. and Fukuda, K., "Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material," Angew. Chem., 115(35), 4335-4338(2003). https://doi.org/10.1002/ange.200351203
  20. Park, D., Park, D., Yu-Lan, Lim, Y. and Kim, M., "High Rate Capability of Carbonaceous Composites as Anode Electrodes for Lithium-ion Secondary Battery," J. Ind. Eng. Chem., 15(4), 588-594(2009). https://doi.org/10.1016/j.jiec.2009.03.001
  21. Wang, C., Zhao, H., Wang, J., Wang, J. and Lv, P., "Electrochemical Performance of Modified Artificial Graphite as Anode Material for Lithium ion Batteries," Ionics, 19(2), 221-226(2013). https://doi.org/10.1007/s11581-012-0733-9
  22. Yoon, S., Kim, H. and Oh, S. M., "Surface Modification of Graphite by Coke Coating for Reduction of Initial Irreversible Capacity in Lithium Secondary Batteries," J. Power Sources, 94(1), 68-73(2001). https://doi.org/10.1016/S0378-7753(00)00601-7
  23. Wang, H. and Yoshio, M., "Carbon-coated Natural Graphite Prepared by Thermal Vapor Decomposition Process, a Candidate Anode Material for Lithium-ion Battery," J. Power Sources, 93(1-2), 123-129(2001). https://doi.org/10.1016/S0378-7753(00)00552-8