DOI QR코드

DOI QR Code

Effects of Olanzapine on the Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine

생쥐 소장 카할세포에서 발생하는 향도잡이 기능의 올란자핀 효능에 관한 연구

  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University)
  • 김병주 (부산대학교 한의학전문대학원)
  • Received : 2019.05.27
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

The interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal (GI) tract. In the present study, the effects of olanzapine, an atypical antipsychotic agent, on pacemaker potentials in cultured ICCs from the small intestine of the mouse were investigated. The whole-cell patch-clamp configuration was used to record pacemaker potentials from cultured ICCs. Olanzapine produced pacemaker depolarizations in a concentration-dependent manner in current clamp mode. Methoctramine, a muscarinic $M_2$ receptor antagonist, did not inhibit olanzapine-induced pacemaker depolarizations, whereas 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) muscarinic $M_3$ receptor antagonist did inhibit it. When guanosine 5'-[${\beta}$-thio] diphosphate (GDP-${\beta}$-S; 1 mM) was in the pipette solution, olanzapine-induced pacemaker depolarization was blocked. Also, low $Na^+$ solution externally eliminated the generation of pacemaker potentials and inhibited the olanzapine-induced pacemaker depolarizations. Additionally, the nonselective cation channel blocker, flufenamic acid, inhibited the olanzapine-induced pacemaker depolarizations. Pretreatment with U-73122, an active phospholipase C (PLC) inhibitor, also eliminated the generation of pacemaker potentials and suppressed the olanzapine-induced pacemaker depolarizations. These results suggested that olanzapine modulates the pacemaker potentials through muscarinic $M_3$ receptor activation by G protein-dependent external $Na^+$ and PLC pathway in the ICCs. Therefore, olanzapine could affect intestinal motility through ICCs.

카할세포는 위장관에서 향도잡이 역할을 한다. 본연구에서는 생쥐 소장 카할세포에서 발생되는 향도잡이 기능에서 올란자핀의 역할을 연구하였다. 패치클램프 방법을 사용하여 향도잡이 전압을 측정하였다. 올란자핀에 의해서 카할세포 향도잡이 전압이 탈분극 되었으며, 이 탈분극은 무스카린성 3번 수용체 억제제에 의해서 억제 되었다. 세포내 $GDP{\beta}S$을 넣어주니 올란자핀에 의해 향도잡이 전압 탈분극이 억제되었다. 또한, 세포밖 $Na^+$ 농도 감소와 비선택성 양이온 통로 억제제에 의해서 올란자핀에 의한 향도잡이 전압 탈분극이 억제 되었다. 세포내 PLC기전의 억제제인 U-73122에 의해서 올란자핀에 의한 향도잡이 전압 탈분극이 억제 되었다. 이러한 결과로 올란자핀은 무스카린성 3번 수용체를 통해서 세포내 G 단백질과 PLC기전 및 세포밖 $Na^+$이 관여함을 알 수 있었다. 따라서 올란자핀은 카할세포를 통해서 장운동성을 조절 할 수 있을 것으로 생각된다.

Keywords

References

  1. Ahn, Y. M., Kang, D., Kwon, J. S., Kim, C. Y., Kim, C. E., Bahn, G. , Shin, Y., Lee, G., Lee, D. W., Yi, J. S., Cho, H., Chae, J. and Kim, Y. S. 2001. Efficacy and Safety of Olanzapine in the Treatment of Korean Patients with Schizophrenia and Schizophreniform Disorder. J. Kor. Neuropsychiatr. Asso. 40, 693-707.
  2. Bhana, N., Foster, R. H., Olney, R. and Plosker, G. L. 2001. Olanzapine: an updated review of its use in the management of schizophrenia. Drugs 61, 111-161. https://doi.org/10.2165/00003495-200161010-00011
  3. Bymaster, F. P., Nelson, D. L., DeLapp, N. W., Falcone, J. F., Eckols, K., Truex, L. L., Foreman, M. M., Lucaites, V. L. and Calligaro, D. O. 1999. Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1 and alpha 1-adrenergic receptors in vitro. Schizophr. Res. 37, 107-122. https://doi.org/10.1016/S0920-9964(98)00146-7
  4. Bymaster, F., Perry, K. W., Nelson, D. L., Wong, D. T., Rasmussen, K., Moore, N. A. and Calligaro, D. O. 1999. Olanzapine; a basic science update. Br. J. Psychiatry 174, 36-40. https://doi.org/10.1192/S0007125000293653
  5. Chromy, V., Zahradnicek, L. and Voznicek, J. 1981. Use of N-methyl-D-glucamine as buffer in the determination of serum alkaline phosphatase activity. Clin. Chem. 27, 1729-1732. https://doi.org/10.1093/clinchem/27.10.1729
  6. D, MacMillan. and J. G., McCarron. 2010. The phospholipase C inhibitor U-73122 inhibits $Ca^{2+}$ release from the intracellular sarcoplasmic reticulum $Ca^{2+}$ store by inhibiting $Ca^{2+}$ pumps in smooth muscle. Br. J. Pharmacol. 160, 1295-1301. https://doi.org/10.1111/j.1476-5381.2010.00771.x
  7. Ehlert, F. J., Sawyer, G. W. and Esqueda, E. E. 1999. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal smooth muscle. Life Sci. 64, 387-394. https://doi.org/10.1016/S0024-3205(98)00584-0
  8. Huizinga, J. D., Thuneberg, L., Kluppel, M. and Malysz, H. B. 1995. The W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347-349. https://doi.org/10.1038/373347a0
  9. Kho, S. D., Sanders, K. M. and Ward, S. M. 1998. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J. Physiol. 513, 203-213. https://doi.org/10.1111/j.1469-7793.1998.203by.x
  10. Kim, B. J., Lim, H. H., Yang, D. K., Jun, J. Y., Chang, I. Y., Park, C. S., So, I., Stanfield, P. R. and Kim, K. W. 2005. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504-1517. https://doi.org/10.1053/j.gastro.2005.08.016
  11. Koh, S. D., Ward, S. M., Ordög, T., Sanders, K. M. and Horowitz, B. 2003. Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Curr. Opin. Pharmacol. 3, 579-582. https://doi.org/10.1016/j.coph.2003.09.002
  12. Koutouratsas, T., Kalli, T., Karamanolis, G. and Gazouli, M. 2019. Contribution of ghrelin to functional gastrointestinal disorders' pathogenesis. World J. Gastroenterol. 25, 539-551. https://doi.org/10.3748/wjg.v25.i5.539
  13. Kubota, M., Kanda, E., Ida, K., Sakakihara, Y. and Hayashi, M. 2005. Severe gastrointestinal dysmotility in a patient with congenital myopathy: causal relationship to decrease of interstitial cells of Cajal. Brain Dev. 27, 447-450. https://doi.org/10.1016/j.braindev.2004.10.006
  14. Lee, H. K. and Sanders, K. M. 1993. Comparison of the electric currents from interstitial cells and smooth muscle cells of canine proximal colon. J. Physiol. 460, 135-152. https://doi.org/10.1113/jphysiol.1993.sp019463
  15. Ogata, R., Inoue, Y., Nakano, H., Ito, Y. and Kitamura, K. 1996. Oestradiol-induced relaxation of rabbit basilar artery by inhibition of voltage-dependent Ca channels through GTP-binding protein. Br. J. Pharmacol. 117, 351-359. https://doi.org/10.1111/j.1476-5381.1996.tb15198.x
  16. Prommer, E. 2013. Olanzapine: palliative medicine update. Am. J. Hosp. Palliat. Care. 30, 75-82. https://doi.org/10.1177/1049909112441241
  17. Sanders, K. M., Koh, S. D., Ro, S. and Ward, S. M. 2012. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9, 633-645. https://doi.org/10.1038/nrgastro.2012.168
  18. Sanders, K. M., Ordög, T. and Ward, S. M. 2002. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G747-756. https://doi.org/10.1152/ajpgi.00362.2001
  19. Sanders, K. M., Tamas, O., Kho, S. D., Torihashi, S. and Ward, S. M. 1999. Deveolpment of interstitial cells of cajal. Neurogastroenterol. Motil. 11, 3-11.
  20. Sanders, K. M., Ward, S. M. and Koh, S. D. 2014. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94, 859-907. https://doi.org/10.1152/physrev.00037.2013
  21. Zhang, J., Qiao, Y., Le, J., Sun, D., Guan, Y. and Li, Z. 2016. Olanzapine may inhibit colonic motility associated with the 5-HT receptor and myosin lightchain kinase. Psychiatry Investig. 13, 232-238. https://doi.org/10.4306/pi.2016.13.2.232
  22. Zhang, Y. H. and Hancox, J. C. 2003. A novel, voltage-dependent nonselective cation current activated by insulin in guinea pig isolated ventricular myocytes. Circ. Res. 92, 765-768. https://doi.org/10.1161/01.RES.0000065920.64121.FC
  23. Zhu, M. H., Kim, T. W., Ro, S., Yan, W., Ward, S. M., Koh, S. D. and Sanders, K. M. 2009. A $Ca^{2+}$-activated Cl-conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J. Physiol. 587, 4905-4918. https://doi.org/10.1113/jphysiol.2009.176206