DOI QR코드

DOI QR Code

Developing Dominant Tree Height Growth Curve and Site Index Curves for Pinus densiflora and Chamaecyparis obtusa Grown in Jeolla-do

전라도 지역 소나무와 편백에 대한 수고생장모델 및 지위지수곡선 개발

  • Park, Hee-Jung (Department of Forest Environmental Science, Chonbuk National University) ;
  • Lee, Sang-Hyun (Department of Forest Environmental Science, Chonbuk National University)
  • 박희정 (전북대학교 산림환경과학과) ;
  • 이상현 (전북대학교 산림환경과학과)
  • Received : 2019.05.28
  • Accepted : 2019.07.23
  • Published : 2019.09.30

Abstract

This study was conducted to provide the basic information for a reasonable forest management plan and sustainable forest management by developing a dominant tree height growth model using diameter at breast height (DBH) and site index curves for Pinus densiflora and Chamaecyparis obtusa growing in Jeolla-do. The altitude, slope, orientation, soil type, height and DBH of a dominant tree, and the ages of trees were measured for 3055 Pinus densiflora trees (611 plots) and 3345 Chamaecyparis obtusa trees (699 plots), and these data were used to develop a customized afforestation map. In the dominant tree height growth model, the relationship to DBH was used in the Petterson, Michailow, and log equations. Also, a dominant tree height growth model in relationship to age used the Chapman-Richards, Schumacher, and Gompertz equations. The Petterson equation, which has a lower mean square error, was used to model dominant tree height growth in relationship to DBH. In the model of dominant tree height growth in relationship to age, three kinds of equations were considered to have little statistical difference. Therefore, the Chapman-Richards equation was chosen for modeling on the national level. Thirtyyears was used as the base age, which is an important factor for estimating the site index curves. In the results, a more varied range of site index family curves with 6-18 was developed for Pinus densiflora, and with 6-22 for Chamaecyparis obtusa. As the new site index curves indicated influences on growth of Pinus densiflora and Chamaecyparis obtusa, a reasonable forest management plan will be possible in the future for Jeolla-do.

본 연구는 전라도 지역의 주요 수종인 소나무와 편백의 흉고직경에 따른 우세목의 수고생장모델과 지위지수곡선을 개발하여 합리적인 경영과 지속가능한 산림경영체계의 기초자료를 제공할 목적으로 실시하였다. 데이터는 맞춤형 조림지도 제작을 위한 전라도 지역에 생육하고 있는 소나무 3,055본(611개 표본점), 편백 3,345본(669개 표본점)에 대한 표고, 경사도, 방위, 토양형, 우세목의 수고와 흉고직경, 수령 등을 측정하여 수집하였다. 전라도 지역 소나무와 편백에 대한 흉고직경에 따른 우세목의 수고생장모델은 Petterson식, Michailow식, Log식을 이용하였으며, 연령에 따른 우세목의 수고생장모델은 Chapman-Richards식, Schumacher식, Gompertz식을 이용하여 개발하였다. 흉고직경에 따른 우세목의 수고생장모델은 소나무와 편백 모두 잔차평균제곱의 값이 가장 낮은 Pettersosn식을 선정하였다. 연령에 따른 우세목의 수고생장모델은 국가수준에서 사용하고 있는 Chapman-Richards식을 선정하였다. 지위지수의 추정을 위하여 기준임령(Base age)은 30년을 사용하였다. 그 결과 소나무는 지위지수 6~18, 편백은 지위지수 6~22로 국가수준에서 사용하고 있는 지위지수곡선에 비해 매우 다양하게 지위를 추정할 수 있어, 현실임분의 합리적인 경영을 위한 자료제공에 적합한 것으로 판단된다.

Keywords

References

  1. Ahn, J.M., Woo, J.C., Yoon, H.Y., Lee, D.S., Lee, S.H., Lee, Y.J., Lee, W.K. and Lim, Y.J. Forest Management. Hyangmunsa. Seoul.
  2. Avery, T.E. and Bukhart, H.E. 1994. Forest Measurements. McGraw-Hill, Inc. pp. 321-347.
  3. Avery, T.E. and Bukhart, H.E. 2002. Forest Measurements 5th Edition. McGraw-Hill, Inc. pp. 321-347.
  4. Biging, G.S. 1985. Improved estimates of site index curves using a varying-parameter model. Forest Science 31: pp. 248-259.
  5. Burkhart, H.E. 1990. Status and future of growth and yield models. In: Proc. a Sump. on State-of the Art Methodology of Forest Inventory. USDA Forest Service General Technical Report PNWGTR-263, pp. 409-414
  6. Cieszewski, C.J. 2002. Comparing fixed and variable-base-age site equations having single versus multiple asymptotes. Forest Science 54(3): 303-315.
  7. Clutter, J.L., Fortson, J.C,L, Pienaar, V., Brister, G.H. and Bailey, R.L. 1983. Timber Management - A Quantitative Approach. John Wiley and Sons. pp. 31-58.
  8. Dyer, M.E. and Bailey, R.L. 1987. A test of six methods for estimating true height from stem analysis data. Forest Science 33: 3-13.
  9. Husch, B.T., Beers, W. and Kershaw, J.A. 2003. Forest Mensuration. John Wiley Sons, Inc. pp. 198-200.
  10. Kim, H.J. 2015. Changes in Ecological Charateristics and Development of Growth Models for Chamaecyparis obtusa Based on Thinning Intensities. Jeonju. Chonbuk National University.
  11. Kim, K.H. 1987. Study on the Site Index by Location Environmental Factors. Journal of Korean Forest Society 76(3): 314-314.
  12. Korea Forest Research Institute. 2012. Timber vvolume.biomass and yield table. Korea Forest Research Institute.
  13. Laar, A. B. and A. Akca. 1997. Forest mensuration. Cuvilier Verlag Gottingen. pp. 229-235.
  14. Munro, D.D. 1974. Forest growth models: a prognosis. In: Fries, J. (Ed.), Growth Models for Tree and Stand Simulation Research. Note 30, Department of Forestry Yield Research. Royal College of Forestry, Stockholm. pp. 7-21.
  15. Philip, M.S. 1994. Measuring trees and forests. Cab International. pp. 28-35.
  16. Son, Y.M., Lee, K.H. and Chung, Y.G. 1997. Stand Growth Estimation Using Nonlinear Growth Equations. Journal of Korean Forest Society 86(2): 135-145.