DOI QR코드

DOI QR Code

Development of ISSR-Derived SCAR Markers for Identification of Jujube Cultivars

대추나무 품종 식별을 위한 ISSR 유래 SCAR 표지 개발

  • Nam, Jae-Ik (Division of Forest Special Products, National Institute of Forest Science) ;
  • Kim, Chul-Woo (Division of Forest Special Products, National Institute of Forest Science) ;
  • Kim, Sea-Hyun (Division of Forest Special Products, National Institute of Forest Science)
  • 남재익 (국립산림과학원 산림소득자원연구과) ;
  • 김철우 (국립산림과학원 산림소득자원연구과) ;
  • 김세현 (국립산림과학원 산림소득자원연구과)
  • Received : 2019.05.28
  • Accepted : 2019.08.27
  • Published : 2019.09.30

Abstract

Precise and fast identification of crop cultivars is essential for efficient breeding and plant breeders' rights. Traditional methods for identification of jujube cultivars are based on the evaluation of morphological characteristics. However, due to time constraints and environmental influences, it is difficult to distinguish cultivars using only morphological traits. In this study, we cloned fragments from improved inter simple sequence repeats (ISSR) analysis, and developed stably diagnostic sequence-characterized amplified region (SCAR) markers. The specific ISSR bands of jujube cultivars from Dalizao and Boeundaechu were purified, cloned, and sequenced. As a result, four clones labeled 827Dalizao550, 827Boeun750, 846Boeun700, and 847Dalizao850 were identified. In order to investigate whether they were specific for the jujube cultivar, four pairs of SCAR primers were then designed and polymerase chain reaction (PCR) amplifications were conducted to analyze 32 samples, including jujube and sour jujube. In the PCR amplification of the 827Dalizao550 SCAR marker, the specific bands with 550 bp were amplified in six samples (Dalizao, Sandonglizao, Dongzao, Yuanlin No. 2, Suanzao 2, Suanzao 4), but unexpected bands (490 bp) were amplified in the others. Moreover, in the PCR amplification of the 847Dalizao850 SCAR marker, the specific bands with 850 bp were found in three samples (Dalizao, Sandonglizao, and Dongzao) and 900 bp unexpected bands were amplified in five samples (Pozao, Suanzao 1, Suanzao 2, Suanzao 3, Suanzao 4). These results showed that newly developed markers could be useful as a fast and reliable tool to identify jujube cultivars. However, further identification of polymorphic information and the development of SCAR markers are required for the identification of more diverse cultivars.

정확하고 신속한 품종식별은 효율적인 육종과 육종가의 권리 보호를 위하여 필수적이다. 대추나무 품종을 구분하는 전통적인 방법은 형태적 특성을 근거로 하지만, 시기적 제약과 환경의 영향으로 형태적 형질만을 이용하여 구별하기에는 어려움이 있다. 이에 본 연구에서는 ISSR 분석으로 얻어진 단편을 복제하여 안정적인 식별을 위한 SCAR 표지를 개발하였다. 대리조와 보은대추 품종에서 특이성을 보이는 ISSR 밴드를 대상으로 정제, 복제, 염기서열 분석을 수행함으로써 827Dalizao550, 827Boeun750, 846Boeun700, 847Dalizao850로 명명된 4개의 클론을 확인하였다. 대추나무 품종 특이성 분석을 위한 4쌍의 SCAR 프라이머를 제작하였으며, 대추나무와 묏대추나무를 포함하는 32개체에 대하여 PCR 분석을 수행하였다. 827Dalizao550 SCAR 표지의 PCR 결과 6개체(대리조, 산동이조, 동조, 원령 신 2호, 묏대추나무 2, 묏대추나무 4)에서 550 bp의 특이적인 밴드가 증폭되었고, 나머지 개체에서는 예기치 않은 밴드(490 bp)가 증폭되었다. 또한 847Dalizao850 SCAR 표지의 PCR 결과 대리조, 산동이조, 동조에서 850 bp의 밴드가 나타났고 예기치 않은 900 bp의 밴드가 5개체(파조, 묏대추나무 1, 묏대추나무 2, 묏대추나무 3, 묏대추나무 4)에서 증폭되었다. 이상의 결과로 보아 새롭게 개발된 표지들은 대추나무 품종식별을 위한 빠르고 신뢰성 있는 수단으로 이용될 수 있을 것으로 생각된다. 하지만 보다 다양한 품종들의 식별을 위해서는 다형성 정보의 추가와 SCAR 표지의 개발이 필요하다.

Keywords

References

  1. Albami, M.C., Battey, N.H. and Wilkinson, M.J. 2004. The development of ISSR-derived SCAR markers around the seasonal flowering locus (SFL) in Fragaria vesca. Theoretical and Applied Genetics 109: 571-579. https://doi.org/10.1007/s00122-004-1654-4
  2. Ammiraju, J.S.S., Dholakia, B.B., Santra, D.K., Singh, H., Langu, M. D., Tamahakar, S.A., Dhaliwal, H.S., Rao, V.S., Gupta, V.S. and Ranjekar, P.K. 2001. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical and Applied Genetics 102: 726-732. https://doi.org/10.1007/s001220051703
  3. Asif, M., Mehboob-ur-Rahman, J., Mirza, I. and Zafar, Y. 2008. High resolution metaphor agarose gel electrophoresis for genotyping with microsatellite markers. Pakistan Journal of Agricultural Sciences 45: 75-79.
  4. Azam-ali, S., Bonkoungou, E., Bow, C., deKock, C., Godara, A. and Williams, J.T. 2006. Ber and other jujubes. International Centre for Underutilised Crops University of Southampton, Southampton, SO17 1BJ, UK. pp. 289.
  5. Bernet, G.P., Bramardi, S., Calvache, D., Carbonell, E.A. and Asins, M.J. 2003. Applicability of molecular markers in the context of protection of new varieties of cucumber. Plant Breeding 122: 146-152. https://doi.org/10.1046/j.1439-0523.2003.00838.x
  6. Choi, S.Y., Yoon, B.R. and Kim, S.S. 2016. Characteristics and nutritional compositions of two jujube varieties cultivated in Korea. Korean Journal of Food Preservation 23(1): 127-130. https://doi.org/10.11002/kjfp.2016.23.1.127
  7. Choi, K.J. and Kim C.H. 2010. Impact of introduction of plant breeders' right. The Journal of Intellectual Property 5(3): 121-167. https://doi.org/10.34122/jip.2010.09.5.3.121
  8. Cooke, R.J. 1999. Modern methods for the cultivar identification and the transgenic plant challenge. Seed Science and Technology 27: 669-680.
  9. Dagar, J.C., Singh, G. and Singh, N.T. 2001. Evaluating forest and fruit trees for rehabilitation of semiarid alkali-sodic soils in India. Arid Land Research and Management 15: 115-133. https://doi.org/10.1080/15324980151062742
  10. Ellsworth, D.L., Rittenhouse, K.D. and Honeycutt, R.L. 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14: 214-217.
  11. Gu, W.K., Weeden, N.F., Wu, J. and Wallace, D.H. 1995. Large-scale, cost-effective screening of PCR products in marker assisted selection applications. Theoretical and Applied Genetics 91: 465-470. https://doi.org/10.1007/BF00222974
  12. Hebbara, M., Manjunatha, M.V., Patil, S.G. and Patil, D.R. 2002. Performance of fruit species in saline-waterlogged soils. Karnataka Journal of Agricultural Sciences 15: 94-98.
  13. Hedren M. 2002. Patterns of allozyme and morphological differentiation in the Carex flava complex (Cyperaceae) in Fennoscandia. Nordic Journal of Botany 22: 257-301. https://doi.org/10.1111/j.1756-1051.2002.tb01373.x
  14. Huang, X., Yuasa, A.K., Norikura, T., Kennedy, D.O., Hasuma, T. and Isao, M.Y. 2007. Mechanism of the anti cancer activity of Zizyphus jujuba in HepG2 cells. The American Journal of Chinese Medicine 35(3): 517-532. https://doi.org/10.1142/S0192415X0700503X
  15. Ji, Q.C., Zhang, X.M., Ren, S.P., Hu, F.X., Du, Y.X. and Yan, J.F. 2001. New jujube varieties Cangwu 1 and Cangwu 3. China Fruits 6: 2-4.
  16. Kasai, K., Morikawa, Y., Sorri, V.A., Valkonen, J.P.T., Gebhardt, C. and Watanabe, K.N. 2000. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome 43: 1-8. https://doi.org/10.1139/gen-43-1-1
  17. Kumar, P., Gupta, V.K., Misra, A.K., Modi, D.R. and Pandey, B.K. 2009. Potential of molecular markers in plant biotechnology. Plant Omics Journal 2(4): 141-162.
  18. Li, X.G., Huang, J., Gao, W.H., Zhang, K.Z. and Tong, J.X. 2004. Yanliang Xiangzao a new drying variety with anti-crack of Ziziphus jujuba Mill. Acta Horticulturae Sinica 31(3): 418.
  19. Liu, M.J. and Cheng, C.Y. 1995. A taxonomic study of the genus Ziziphus. Acta Horticulturae 390: 161-165. https://doi.org/10.17660/actahortic.1995.390.23
  20. Liu, P., Dai, L., Liu, M.J., Jiang, H.E., Zhao, Z.H. and Wang, J.R. 2012. 'Chenguang', a new tetraploid chinese jujube cultivar. Fruits 67(4): 293-296. https://doi.org/10.1051/fruits/2012019
  21. Ma, Y.K., Want, S.Y., An, B.G., Sun,J.J., Yao,F.J., Ma, Y.K., Wang, S.Y., An, B.G., Sun, J.J. and Yao, F.J. 2000. 'Juzhou Gongzao' a promising late jujube variety. China-Fruits 22(1): 38.
  22. Martin, G.B., Williams, J.G.K. and Tanksley, S.D. 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogeneic lines. Proceedings of the National Academy of Sciences 88: 2336-2340. https://doi.org/10.1073/pnas.88.6.2336
  23. Michelmore, R..W, Paran, I. and Kesseli, R.V. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proceedings of the National Academy of Sciences 88: 9828-9832. https://doi.org/10.1073/pnas.88.21.9828
  24. Muralidharan, K. and Wakeland, E.K. 1993. Concentration of primer and template qualitatively affects products in random amplified polymorphic DNA PCR. BioTechniques 14: 362-364.
  25. Nagaoka, T. and Ogihara, Y. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics 94: 597-602. https://doi.org/10.1007/s001220050456
  26. Paran, I. and Michelmore, R.W. 1993. Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics 85: 985-993. https://doi.org/10.1007/BF00215038
  27. Plastina, P., Bonofiglio, D., Vizza, D., Fazio, A., Rovito, D., Giordano, C., Barone, I., Catalano, S. and Gabriele, B. 2012. Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. Journal of Ethnopharmacology 140(2): 325-332. https://doi.org/10.1016/j.jep.2012.01.022
  28. Peterson, A.H., Tanksley, S.D. and Sorrels, M.E. 1991. DNA markers in plant improvement. Advance in Agronomy 46: 39-90. https://doi.org/10.1016/S0065-2113(08)60578-7
  29. Powell, W., Machray, G.C. and Provan, J. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Science 1: 215-222. https://doi.org/10.1016/S1360-1385(96)86898-0
  30. Pratt, D.B. and Clark, L.G. 2004. Amaranthus rudis and A. tuberculatus, one species or two? The Journal of the Torrey Botanical Society 128: 282-296. https://doi.org/10.2307/3088718
  31. Ratnaparkhe, M.B., Santra, D.K., Tullu, A. and Muehlbauer, F.J. 1998. Inheritance of inter simple sequence repeat polymorphism and linkage with fusarium wilt resistance gene in chickpea. Theoretical and Applied Genetics 96: 348-353. https://doi.org/10.1007/s001220050747
  32. Smith, J.S.C. and Smith, O.S. 1992. Fingerprinting crop varieties. Advances in Agronomy 47: 85-140. https://doi.org/10.1016/S0065-2113(08)60489-7
  33. Sneath, P.H.A. 1995. Thirty years of numerical taxonomy. Systematic Biology. 44(3): 281-298. https://doi.org/10.2307/2413593
  34. Vidal, J.R., Delavaunt, P., Coarer, M. and Defontaine, A. 2000. Design of grapevine (Vitis vinifera L.) cultivar-specific SCAR primers for PCR fingerprinting. Theoretical and applied Genetics 101: 1194-1201. https://doi.org/10.1007/s001220051597
  35. Wang, S., Liu, Y., Ma, L., Liu, H., Tang, Y., Wu, L., Wang, Z., Li, Y., Wu, R. and Pang, X. 2014. Isolation and characterization of microsatellite markers and analysis of genetic diversity in chinese jujube (Ziziphus jujuba Mill.). Plos One 9: e99842. https://doi.org/10.1371/journal.pone.0099842
  36. Xu, Y. 2010. Molecular plant breeding. CAB International publishing, Wallingford, Oxfordshire, England. p. 535-549.
  37. Zhang, Y. and Stommel, J.R. 2001. Development of SCAR and CAPS markers linked to the gene in tomato. Crop Science 41: 1602-1608. https://doi.org/10.2135/cropsci2001.4151602x
  38. Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 15; 20(2): 176-183. https://doi.org/10.1006/geno.1994.1151

Cited by

  1. 1년생 '대능' 대추 회초리 묘목 재식 시 주간 절단 정도 설정 vol.40, pp.2, 2019, https://doi.org/10.5338/kjea.2021.40.2.9