DOI QR코드

DOI QR Code

Effects of 3,3',4,4',5-pentachlorobiphenyl on human Kv1.3 and Kv1.5 channels

  • Kim, Jong-Hui (Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine) ;
  • Hwang, Soobeen (Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine) ;
  • Park, Seo-in (Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine) ;
  • Jo, Su-Hyun (Department of Physiology, Institute of Bioscience and Biotechnology, BK21 Plus Graduate Program, Kangwon National University College of Medicine)
  • 투고 : 2019.08.20
  • 심사 : 2019.09.18
  • 발행 : 2019.09.30

초록

Among the environmental chemicals that may be able to disrupt the endocrine systems of animals and humans are polychlorinated biphenyls (PCBs), a chemical class of considerable concern. PCB consists of two six-carbon rings linked by a single carbon bond, and theoretically, 209 congeners can form, depending on the number of chlorines and their location on the biphenyl rings. Furthermore, 3,3',4,4',5-pentachlorobiphenyl (PCB126) exposure also increases nitric oxide production and nuclear factor kappa-light-chain-enhancer of activated B cells binding activity in chondrocytes, thus contributing as an initiator of chondrocyte apoptosis and resulting in thymic atrophy and immunosuppression. This study identified whether cardiac and immune abnormalities from PCB126 were caused by the Kv1.3 and Kv1.5 channels. PCB126 did not affect either the steady-state current or peak current of the Kv1.3 and Kv1.5 channels. However, PCB126 right-shifted the steady-state activation curves of human Kv1.3 channels. These results suggest that PCBs can affect the heart in a way that does not block voltage-dependent potassium channels including Kv1.3 and Kv1.5 directly.

키워드

참고문헌

  1. Inter-Organization Programme for the Sound Management of Chemicals. Guidelines for the identification of PCBs and materials containing PCBS. Geneva: UNEP Chemicals; 1999.
  2. McKinney JD, Waller CL. Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect 1994;102:290-7. doi: 10.1289/ehp.94102290.
  3. McFarland VA, Clarke JU. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ Health Perspect 1989;81:225-39. doi: 10.1289/ehp.8981225.
  4. Tharappel JC, Lee EY, Robertson LW, Spear BT, Glauert HP. Regulation of cell proliferation, apoptosis, and transcription factor activities during the promotion of liver carcinogenesis by polychlorinated biphenyls. Toxicol Appl Pharmacol 2002;179:172-84. doi: 10.1006/taap.2001.9360.
  5. Oakley GG, Devanaboyina U, Robertson LW, Gupta RC. Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer. Chem Res Toxicol 1996;9:1285-92. doi: 10.1021/tx960103o.
  6. Jeon YJ, Youk ES, Lee SH, Suh J, Na YJ, Kim HM. Polychlorinated biphenyl-induced apoptosis of murine spleen cells is aryl hydrocarbon receptor independent but caspases dependent. Toxicol Appl Pharmacol 2002;181:69-78. doi: 10.1006/taap.2002.9389.
  7. Tan Y, Li D, Song R, Lawrence D, Carpenter DO. Ortho-substituted PCBs kill thymocytes. Toxicol Sci 2003;76:328-37. doi:10.1093/toxsci/kfg233.
  8. Koopman-Esseboom C, Morse DC, Weisglas-Kuperus N, Lutkeschipholt IJ, Van der Paauw CG, Tuinstra LG, Brouwer A, Sauer PJ. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res 1994;36:468-73. doi: 10.1203/00006450-199410000-00009.
  9. Hagmar L. Polychlorinated biphenyls and thyroid status in humans: a review. Thyroid 2003;13:1021-8. doi:10.1089/105072503770867192.
  10. Baker EL Jr, Landrigan PJ, Glueck CJ, Zack MM Jr, Liddle JA, Burse VW, Housworth WJ, Needham LL. Metabolic consequences of exposure to polychlorinated biphenyls (PCB) in sewage sludge. Am J Epidemiol 1980;112:553-63. doi: 10.1126/science.7010603.
  11. Wilsgaard T, Jacobsen BK, Schirmer H, Thune I, Lochen ML, Njolstad I, Arnesen E. Tracking of cardiovascular risk factors: the Tromso study, 1979-1995. Am J Epidemiol 2001;154:418-26. doi: 10.1093/oxfordjournals.aje.a113024.
  12. Jo SH, Choi SY, Kim KT, Lee CO. Effects of polychlorinated biphenyl 19 (2,2',6-trichlorobiphenyl) on contraction, Ca2+ transient, and Ca2+ current of cardiac myocytes. J Cardiovasc Pharmacol 2001;38:11-20. doi: 10.1093/aje/154.5.418.
  13. Bardin CW, Catterall JF. Testosterone: a major determinant of extragenital sexual dimorphism. Science 1981;211:1285-94. doi: 10.1097/00005344-200107000-00002.
  14. Vondracek J, Machala M, Bryja V, Chramostova K, Krcmar P, Dietrich C, Hampl A, Kozubik A. Aryl hydrocarbon receptoractivating polychlorinated biphenyls and their hydroxylated metabolites induce cell proliferation in contact-inhibited rat liver epithelial cells. Toxicol Sci 2005;83:53-63. doi: 10.3390/toxins6030934.
  15. Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 1995;35:307-40. https://doi.org/10.1146/annurev.pa.35.040195.001515
  16. Carpenter DO, Stoner CR, Lawrence DA. Flow cytometric measurements of neuronal death triggered by PCBs. Neurotoxicology 1997;18:507-13. doi: 10.1146/annurev.pa.35.040195.001515.
  17. Carpenter DO. Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Rev Environ Health 2006;21:1-23. doi: 10.1515/REVEH.2006.21.1.1.
  18. Shimada AL, Cruz WS, Loiola RA, Drewes CC, Dorr F, Figueiredo NG, Pinto E, Farsky SH. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response. Sci Rep 2015;5:14917. doi: 10.1038/srep14917.
  19. Lind PM, Orberg J, Edlund UB, Sjöblom L, Lind L. The dioxin-like pollutant PCB126 (3,3',4,4',5-pentachlorobiphenyl) affects risk factors for cardiovascular disease in female rats. Toxicol Lett 2004;150:293-9. doi: 10.1016/j.toxlet.2004.02.008.
  20. Lee HG, Yang JH. PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways. Osteoarthritis Cartilage 2012;20:1179-85. doi: 10.1016/j.joca.2012.06.004.
  21. Goff KF, Hull BE, Grasman KA. Effects of PCB126 on primary immune organs and thymocyte apoptosis in chicken embryos. J Toxicol Environ Health A 2005;68:485-500. doi: 10.1080/15287390590903720.
  22. Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 2005;309:897-903. doi: 10.1126/science.1116269.
  23. Felipe A, Vicente R, Villalonga N, Roura-Ferrer M, Martinez-Marmol R, Sole L, Ferreres JC, Condom E. Potassium channels: new targets in cancer therapy. Cancer Detect Prev 2006;30:375-85. doi: 10.1016/j.cdp.2006.06.002.
  24. Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarras A, Marruecos L, Gomez D, Soler C, Condom E, Cajal SR, Hernandez-Losa J, Ferreres JC, Felipe A. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol 2013;4:283. doi: 10.3389/fphys.2013.00283.
  25. Decher N, Gonzalez T, Streit AK, Sachse FB, Renigunta V, Soom M, Heinemann SH, Daut J, Sanguinetti MC. Structural determinants of Kvbeta1.3-induced channel inactivation: a hairpin modulated by PIP2. EMBO J 2008;27:3164-74. doi: 10.1038/emboj.2008.231.
  26. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 2005;57:463-72. doi: 10.1124/pr.57.4.9.
  27. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A 2006;103:17414-9. doi:10.1073/pnas.0605136103.
  28. Cahalan MD, Chandy KG. Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol 1997;8:749-56. doi: 10.1016/S0958-1669(97)80130-9.
  29. Anangi R, Koshy S, Huq R, Beeton C, Chuang WJ, King GF. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers. PLoS One 2012;7:e52965. doi: 10.1371/journal.pone.0052965.
  30. Roberds SL, Tamkun MM. Developmental expression of cloned cardiac potassium channels. FEBS Lett 1991;284:152-4. doi: 10.1016/0014-5793(91)80673-Q.
  31. Honore E, Barhanin J, Attali B, Lesage F, Lazdunski M. External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 1994;91:1937-41. doi: 10.1073/pnas.91.5.1937.
  32. Safe S, Krishnan V. Cellular and molecular biology of aryl hydrocarbon (Ah) receptor-mediated gene expression. Arch Toxicol Suppl 1995;17:99-115. doi: 10.1007/978-3-642-79451-3_8.
  33. Erwin KN. Insights into PCB126/Aryl hydrocarbon receptor-induced developmental cardiotoxicity in zebrafish. Ann Arbor: Duke University; 2013:3605525.
  34. Vacher H, Trimmer JS. Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch 2011;462:631-43. doi: 10.1007/s00424-011-1004-8.
  35. Gamper N, Li Y, Shapiro MS. Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 2005;16:3538-51. doi: 10.1091/mbc.E04-09-0849.
  36. Kruse M, Hammond GR, Hille B. Regulation of voltage-gated potassium channels by PI(4,5)P2. J Gen Physiol 2012;140:189-205. doi: 10.1085/jgp.201210806.
  37. Jonas EA, Kaczmarek LK. Regulation of potassium channels by protein kinases. Curr Opin Neurobiol 1996;6:318-23. doi: 10.1016/S0959-4388(96)80114-0.
  38. Bian JS, Kagan A, McDonald TV. Molecular analysis of PIP2 regulation of HERG and IKr. Am J Physiol Heart Circ Physiol 2004;287:H2154-63. doi: 10.1152/ajpheart.00120.2004.
  39. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG. The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 2003;111:1703-13. doi: 10.1172/JCI16921.
  40. Szabo I, Zoratti M, Gulbins E. Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 2010;584:2049-56. doi: 10.1016/j.febslet.2010.01.038.