DOI QR코드

DOI QR Code

Preparation and characterization of rutile phase TiO2 nanoparticles and their cytocompatibility with oral cancer cells

  • Vu, Phuong Dong (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University) ;
  • Nguyen, Thi Kieu Trang (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University) ;
  • Yoo, Hoon (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University)
  • Received : 2019.08.16
  • Accepted : 2019.09.18
  • Published : 2019.09.30

Abstract

In the present study, rutile phase titanium dioxide nanoparticles ($R-TiO_2$ NPs) were prepared by hydrolysis of titanium tetrachloride in an aqueous solution followed by calcination at $900^{\circ}C$. The composition of $R-TiO_2$ NPs was determined by the analysis of X-ray diffraction data, and the characteristic features of $R-TiO_2$ NPs such as the surface functional group, particle size, shape, surface topography, and morphological behavior were analyzed by Fourier-transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The average size of the prepared $R-TiO_2$ NPs was 76 nm, the surface area was $19m^2/g$, zeta potential was -20.8 mV, and average hydrodynamic diameter in dimethyl sulfoxide (DMSO)-$H_2O$ solution was 550 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological observations revealed that $R-TiO_2$ NPs were cytocompatible with oral cancer cells, with no inhibition of cell growth and proliferation. This suggests the efficacy of $R-TiO_2$ NPs for the aesthetic white pigmentation of teeth.

Keywords

References

  1. Braun JH, Baidins A, Marganski RE. $TiO_2$ pigment technology: a review. Prog Org Coat 1992;20:105-38. doi: 10.1016/0033-0655(92)80001-D.
  2. Brand RM, Pike J, Wilson RM, Charron AR. Sunscreens containing physical UV blockers can increase transdermal absorption of pesticides. Toxicol Ind Health 2003;19:9-16. doi: 10.1191/0748233703th169oa.
  3. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev 1993;93:671-98. doi: 10.1021/cr00018a003.
  4. Paz Y, Heller A. Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J Mater Res 1997;12:2759-66. doi: 10.1557/JMR.1997.0367.
  5. Markowska-Szczupak A, Ulfig K, Morawski AW. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 2011;169:249-57. doi: 10.1016/j.cattod.2010.11.055.
  6. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss RD, Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnol 2008;19:1-10. doi: 10.1088/0957-4484/19/14/145605.
  7. Gazquez MJ, Bolivar JP, Garcia-Tenorio R, Vaca F. A review of the production cycle of titanium dioxide pigment. Mater Sci Appl 2014;5:441-58. doi: 10.4236/msa.2014.57048.
  8. Sun J, Gao L, Zhang Q. Synthesizing and comparing the photocatalytic properties of high surface area rutile and anatase titania nanoparticles. J Am Ceram Soc 2003;86:1677-82. doi: 10.1111/j.1151-2916.2003.tb03539.x.
  9. Turci F, Peira E, Corazzari I, Fenoglio I, Trotta M, Fubini B. Crystalline phase modulates the potency of nanometric $TiO_2$ to adhere to and perturb the stratum corneum of porcine skin under indoor light. Chem Res Toxicol 2013;26:1579-90. doi: 10.1021/tx400285j.
  10. Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011;4:95-112. doi: 10.2147/NSA.S19419.
  11. Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 2004;38:439-47. doi: 10.1080/1071576042000206487.
  12. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 1999;28:1-50. doi: 10.1080/03602549909351643.
  13. Eslami N, Ahrari F, Rajabi O, Zamani R. The staining effect of different mouthwashes containing nanoparticles on dental enamel. J Clin Exp Dent 2015;7:457-61. doi: 10.4317/jced.52199.
  14. Wu F, Hicks AL. Estimating human exposure to $TiO_2$ from personal care products through a social survey approach. Integr Environ Assess Manag 2019. doi: 10.1002/ieam.4197. [Epub ahead of print]
  15. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008;36:450-5. doi: 10.1016/j.jdent.2008.03.001.
  16. Nam HD, Lee BH, Kim SJ, Jung CH, Lee JH, Park S. Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation. Jpn J Appl Phys 1998;37:4603-8. doi: 10.1143/JJAP.37.4603.
  17. Zhang QH, Gao L, Guo JK. Preparation and characterization of nanosized $TiO_2$ powders from aqueous $TiCl_4$ solution. Nanostruct Mater 1999;11:1293-300. doi: 10.1016/S0965-9773(99)00421-3.
  18. Zhang Q, Gao L, Guo J. Effect of hydrolysis conditions on morphology and crystallization of nanosized $TiO_2$ powder. J Euro Ceram Soc 2000;20:2153-8. doi: 10.1016/S0955-2219(00)00085-6.
  19. International Agency for Research on Cancer. Carbon black, titanium dioxide, and talc. Lyon: IARC; 2010. p. 1-452.
  20. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Technol 2013;10:15. doi: 10.1186/1743-8977-10-15.