DOI QR코드

DOI QR Code

반송률 변화에 따른 연속 유입식 SBR 공정의 질소 거동

The Nitrogen Behavior in the Continuous Inflow SBR according to Variations of Internal Recycling Rate

  • 김수연 (강원대학교 지구환경시스템공학과) ;
  • 최용범 (강원대학교 지구환경시스템공학과) ;
  • 조유나 (강원대학교 지구환경시스템공학과) ;
  • 한동준 (강원도립대학교 소방환경방재과) ;
  • 권재혁 (강원대학교 지구환경시스템공학과)
  • Kim, Su-Yeon (Department of Earth & Environmental Engineering, Kangwon National University) ;
  • Choi, Yong-Bum (Department of Earth & Environmental Engineering, Kangwon National University) ;
  • Jo, You-Na (Department of Earth & Environmental Engineering, Kangwon National University) ;
  • Han, Dong-Joon (Department of Fire.Environment Disaster, Gangwon State University) ;
  • Kwon, Jae-Hyouk (Department of Earth & Environmental Engineering, Kangwon National University)
  • 투고 : 2019.08.27
  • 심사 : 2019.09.17
  • 발행 : 2019.09.30

초록

연속 유입식 SBR 공정의 BOD 제거효율은 체류 시간 9 ~ 15 h에서는 92.1 ~ 96.0%에서 체류 시간 6 h에서는 86.9 ~ 90.7%로 감소하였으나, 체류 시간 6 h까지 안정적인 제거효율을 보였다. T-N 제거효율은, 체류시간 12 ~ 15 h에서는 80.1 ~ 87.9%, 체류시간 9 h에서는 71.9 ~ 87.0%, 체류시간 6 h에서는 60.1 ~ 65.7%로 감소되었다. 유기물 및 질소 제거 결과 실험결과 연속 유입식 SBR 반응조의 최적 체류시간은 9 h로 판단된다. 체류시간 9 h에서 반송률(1 ~ 5Q) 변화에 따른 유기물 제거효율 검토 결과, TCODcr의 제거율은 88.4 ~ 96.0%, TBOD 제거효율은 92.1 ~ 98.1%로 조사되어 내부반송률 변화가 유기물 제거에 미치는 영향은 미미한 것으로 조사되었다. 내부반송률 변화에 따른 T-N은 1 ~ 2Q에서 70.3 ~ 80.4%, 3Q는 77.2 ~ 85.6%, 4 ~ 5Q는 61.5 ~ 80.8%로 조사되어, 내부반송률 3Q에서 질소 제거효율이 가장 높게 조사되었다. T-P는 1 ~ 4Q에서 제거효율은 75.0 ~ 84.6%, 5Q에서는 63.3 ~ 72.4%로 감소하였는데, 이러한 이유는 반송률 5Q 이상에서는 미생물에 의한 인(P)의 용출 및 섭취가 원활하게 이루어지지 않기 때문으로 판단된다. 따라서 유기물 및 영양염류 제거를 위한 최적 반송률은 3Q로 조사되었다.

The BOD removal efficiency according to HRT of the continuous inflow SBR process was decreased from 92.1 ~ 96.0% at HRT 9 ~ 15 h to 86.9 ~ 90.7% at HRT 6 h, but a stable removal efficiency was shown up to HRT 6 h. The T-N removal rate was decreased to 80.1 ~ 87.9% at HRT 12 ~ 15 h, to 71.9 ~ 87.0% at HRT 9 h, and to 60.1 ~ 65.7% at HRT 6 h. As a result of the test of removing organic matter and nitrogen, the optimum HRT of the continuous inflow SBR reactor is determined as 9 h. The TCODcr removal efficiency was 88.4 ~ 96.0% and the TBOD removal efficiency was 92.1 ~ 98.1% as a result of examination of organic matter removal efficiency according to a change in the recycling rate (1 ~ 5Q) at HRT 9 h, suggesting that the a change in the recycling rate has a minimal effect on the removal of organic matter. The T-N removal efficiency was 70.3 ~ 80.4% at 1 ~ 2Q, 77.2 ~ 85.6% at 3Q and 61.5 ~ 80.8% at 4 ~ 5Q according to a change in the recycling rate. The TP removal efficiency was reduced to 75.0 ~ 84.6% at 1 ~ 4Q and to 63.3 ~ 72.4% at 5Q. This is presumably because the release and ingestion of phosphorus (P) by microorganisms is not performed smoothly at 5Q or more. Therefore, the optimum recycling rate for removing organic matter and nutrients was found to be 3Q.

키워드

참고문헌

  1. Ministry of Environment (Korea), "White Paper of Environment," 2014.
  2. Roh, S.-H., Kim, H.-Y., Moon, W., Yun, Y.-J., and Kim, S.-I., "A Study on the Operating Cycle of Sequencing Batch Ractor for Nitrogen and Phosphorus Removal," Appl. Chem., 6(1), 272-275 (2002).
  3. Irvine, R. L., and Busch, A. W., "Sequencing Batch Biolotgical Reactors: An Overview," J. Water Pollut. Control Fed., 51(2), 235-243 (1979).
  4. Kim, D.-W., Park, Y.-W., and Park, G.-T., "A Study on the ORP Modeling in SBR Process for Nitrogen Removal: Polynomial Neural Network Is Employed," Trans. Kor. Institute Electri. Eng., 53(4), 221-225 (2004).
  5. Kim, H.-T., Park, C.-K., and Shin, S.-W., "Optimization of Reactor by Using ORP in SBR" J. Kor. Soc. Water Environ., 18(6), 613-620 (2002).
  6. Kim, S.-S., "A Study on Model Development and Application to control SBR Wastewater Treatment," Ph.D. Dissertation, Seoul National University l, Seoul (2006).
  7. Choi, Y.-B., Lee, J.-G., Han, D.-J., and Kwon, J.-H., "Effect of Advanced Wastewater Treatment by Variations Operating Conditions of 4-stage intermittently aerated Activated Sludge Process," J. Korea Academia-Ind. Cooperation Soc., 14(2), 970-976 (2013). https://doi.org/10.5762/KAIS.2013.14.2.970
  8. Lim, B.-S., Oa, S.-W., and Jo, N.-U., "Comparison on Nutrient Removal of the MLE and A2 /O Process Combined with Intermittent Aeration," Kor. Soc. Water Wastewater, 15(4), 325-333 (2001).
  9. Yang, B.-S., Park, N.-B., and Lee, J.-K., "A Study on Upgrading of Existing Wastewater Treatment Plants for Nitrogen and Phosphorus Removal," J. Kor. Soc. Water Environ., 6(1) 1050-1060 (1990).
  10. Lee, K.-Y., Bum, B.-S., and Cho, K.-M., "Removal of Nitrogen from Leachate by Biofilm Anoxic/Oxic Process," Kor. Soc. Environ. Eng., 21(10), 1879-1889 (1999).
  11. Sharma, B., and R, Ahlert, "Nitrification and nitrogen removal" Water Res., 11(10), 897-925 (1977). https://doi.org/10.1016/0043-1354(77)90078-1
  12. Park, J.-Y., "Improvement of ORP based Denitrification Diagnosis rule by considering temperature and MLVSS Variation," Master's thesis, Pusan National University, Pusan (2004).