DOI QR코드

DOI QR Code

해저지형 표면자료의 GNSS 보정방법에 따른 불확실도 연구

Uncertainty Analysis of BAG by GNSS Correction

  • 투고 : 2019.06.04
  • 심사 : 2019.09.27
  • 발행 : 2019.09.30

초록

최근 해양분야에서는 해양공간정보의 발전을 위한 범용수로데이터모델 표준인 S-100에 관한 개발과 표준화가 진행되었고, S-100에서는 해도 제작 업무의 효율성과 수심자료의 다목적 활용을 위해 수심과 불확실도, 속성정보가 결합된 BAG 포맷의 S-102(Bathymetric Surface grid) 표준 개발 및 다양한 연구가 진행되고 있다. 선박의 운항에 중요한 수심 정보는 S-102 기반에서 제공됨으로 S-102 제작시 위치정보 보정방법은 수심결정에 중요한 요소이다. 본 연구에서는 국내에서 S-102 제작을 위한 표준화된 방법을 시범 적용하여 수로측량을 실시하였으며, 위치정보의 정확도 비교를 위해 GNSS 후처리 보정방법에 따른 수심 정보의 정확도를 비교하였다. 연구지역의 암반지형 2개소에서 수심을 비교한 결과 남무도 북측 수심은 DL 0.79~0.83m이며, 대호도 동측 수심은 DL 12.63~12.91m로 나타났고, 천소수심의 수평위치 오차는 1m 이내로 확인되었다. 결과적으로 BAG 제작시 위치보정방법에 따른 천소 수심의 오차는 선박의 안전항행에 사용가능한 범위에 있음을 확인하였다. 하지만 수로측량시 선박의 위치에 대한 정확도 검증은 지역특성 및 환경요소에 대한 다양한 추가 연구가 필요할 것으로 판단된다.

In the recent marine sector, the development and standardization regarding S-100, which is the universal hydrographical data model standard for development of marine space information, was progressed, and for the effectiveness of marine chart production work and the multi-purpose use of water level data in S-100, S-102(Bathymetric Surface grid) standard development and various studies of BAG formats combined with water level and uncertainty, property information is being progressed. Since the water level information that is important in the operation of the ship is provided based on S-102, the calibration method of the location information when producing S-102 is an important factor in deciding the water level. In this study, the hydrographical surveying was conducted by piloting the standardized method for the production of S-102 in Korea, and have compared the accuracy of water level information according to the GNSS post treatment calibration method. As a result of comparing the water level in 2 places in the rocky terrain of the study area, the northern water level of Namu-do was shown as DL 0.79~0.83m, the eastern water level of Daeho-do was DL 12.63~12.91m, and the horizontal position errors of the intermittent sunshine water level were confirmed to be within 1m. As a result, the intermittent sunshine water level according to the location calibration method when producing the BAG was confirmed that it was in the available range for a ship's safe voyage. However, the accuracy verification for the location of the ship when conducting hydrographical surveying was judged that there is a need for a various additional study about regional characteristics and environment factor.

키워드

참고문헌

  1. Collins, J.P., F. Lahaye., P. Heroux., and S. Bisnath. 2008. Pricise point positioning with ambiguity resolution using the decoupled clock model. Proceedings of the Institute of Navigation International Technical Meetion OIN GNSS. Savannah Georgia USA pp.1315-1322.
  2. Gabor, M.J, and R.S. Nerem. 2002. Satellite-satellite single-difference phase bias calibration as applied to ambiguity resolution. Navigation 49(4):223-242. https://doi.org/10.1002/j.2161-4296.2002.tb00270.x
  3. Kim, S.Y., H.C. Lee, G.W. Lee and H.J. Lee. 2015. Study on the application measures of e-navigation in maritime fisheries sector. Research Project report. Korea Maritime Institute. p.155
  4. Kim, H., C. Mun and S. Lee. 2017. A design of data model for marine casualty based on S-100. Journal of Digital Contents Society. 18(4):769-775 https://doi.org/10.9728/dcs.2017.18.4.769
  5. Kang, J. M., Y.W. Lee, M.G. Kim and J.K. Park. 2008. Positional accuracy analysis of permanent gps sites using precise point positioning, Journal of the Korean Society of Surveying. Photogrammetry and Cartography. 26(5):529-536
  6. Lee, Y.C. 2013. Accuracy analysis of absolute positioning by GNSS. Journal Of The Korean Society Of Civil Engineers. 33(6):2601-2610 https://doi.org/10.12652/Ksce.2013.33.6.2601
  7. LEE, J.O., H.W. CHOI, B.Y. YUN and C.Y. PARK. 2014. Integrated Geospatial Information Construction of Ocean and Terrain Using Multibeam Echo Sounder Data and Airborne Lidar Data. Journal of the Korean Association of Geographic Information Studies 17(4):28-39 https://doi.org/10.11108/kagis.2014.17.4.028
  8. Laurichesse, D. 2011. The cnes real-time ppp with undifferenced integer ambiguity resolution demonstrator, Proceedings of the ION GNSS 2011. Portland. Oregon. pp.654-662.
  9. Laurichesse, D. 2012. Phase biases estimation for undifferenced ambiguity resolution. PPP-RTK & Open Standards Symposium. March 2012. Frankfurt am Main. Germany. pp.12-13.
  10. Laurichesse, D., F. Mercier and J.P. Berthias. 2010. Real time ppp with undifferenced integer ambiguity resolution, experimental results. Proceedings of the ION GNSS 2010. Portland. Oregon. pp.2534-2544.
  11. Laurichesse, D., F. Mercier, J.P. Berthias and J. Bijac. 2008. Real time zerodifference ambiguities blocking and absolute rtk. ION NTM 2008. January 2008. San Diego. California. pp.747-755.
  12. Laurichesse, D., F. Mercier, J.P. Berthias, P. Broca and L. Cerri. 2009. Integer ambiguity resolution on undifferenced gps phase measurements and its application to ppp and satellite precise orbit determination. Navigation. Journal of the Institute of Navigation 56(2):135-149.
  13. PARK, E.H., D.H. KIM, H.Y. JEON, H.Y. KANG and K.W. YOO. 2018. A Study on Hydrographic Survey based on Acoustic Echo-Sounder and GNSS. Journal of the Korean Association of Geographic Information Studies 21(3):119-126 https://doi.org/10.11108/kagis.2018.21.3.119
  14. Trimble. 2011. Introducing ambiguity resolution in web-hosted global multi gnss precise point positioning with trimble rtx-pp. ION GNSS 2011. pp.1115-1125.