DOI QR코드

DOI QR Code

Potential Wide-gap Materials as a Top Cell for Multi-junction c-Si Based Solar Cells: A Short Review

  • Pham, Duy Phong (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Sunhwa (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Sehyeon (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Oh, Donghyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Khokhar, Muhammad Quddamah (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Sangho (Department of Energy Science, Sungkyunkwan University, Natural Science Campus) ;
  • Park, Jinjoo (Major of Energy and Applied Chemistry, Division of Energy & Optical Technology Convergence, Cheongju University) ;
  • Kim, Youngkuk (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Eun-Chel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Young-Hyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2019.06.26
  • 심사 : 2019.09.04
  • 발행 : 2019.09.30

초록

Silicon heterojunction solar cells (SHJ) have dominated the photovoltaic market up till now but their conversion performance is practically limited to around 26% compared with the theoretical efficiency limit of 29.4%. A silicon based multi-junction devices are expected to overcome this limitation. In this report, we briefly review the state-of-art characteristic of wide-gap materials which has played a role as top sub-cells in silicon based multi-junction solar cells. In addition, we indicate significantly practical challenges and key issues of these multi-junction combination. Finally, we focus to some characteristics of III-V/c-Si tandem configuration which are reaching highly record performance in multi-junction silicon solar cells.

키워드

참고문헌

  1. Pham, D. P., Kim, S., Kim, S., Lee, S., Le, A. H. T., Park, J., Yi, J., "Ultra-thin stack of n-type hydrogenated microcrystalline silicon and silicon oxide front contact layer for rear-emitter silicon heterojunction solar cells," Materials Science in Semiconductor Processing, Vol. 96, pp. 1-7, 2019. https://doi.org/10.1016/j.mssp.2019.02.017
  2. Holman, Z.C., Descoeudres, A., Barraud, L., Fernandez, F.Z., Seif, J.P., Wolf, S.D., Ballif, C.,"Current losses at the front of silicon heterojunction solar cells," IEEE J. Photovolt., Vol. 2, No. 1, pp. 7-9, 2012. https://doi.org/10.1109/JPHOTOV.2011.2174967
  3. Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., Oota, O., "HITTM Cells High Efficiency Crystaline Si Cels with Novel Structure," Prog. Photovolt. Res. Appl., Vol. 8, pp. 503-513, 2000. https://doi.org/10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
  4. Taguchi, M., Terakawa, A., Maruyama, E., Tanaka, M.. "Obtaining a higher Voc in HIT cells," Prog. Photovolt. Res. Appl., Vol. 13, No. 6, pp. 481-488, 2005. https://doi.org/10.1002/pip.646
  5. Yoshikawa, K., Kawasaki, H., Yoshida, W. et al., "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Vol. 2, p. 17032, 2017. https://doi.org/10.1038/nenergy.2017.32
  6. Richter, A., Benick, J., Feldmann, F., Fell, A., Hermle, M., Glunz, S. W., "n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation," Sol. Energy Mater. Sol. Cells, Vol. 173, pp. 96-105, 2017. https://doi.org/10.1016/j.solmat.2017.05.042
  7. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E., Okamoto, S., "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE Journal of Photovoltaic, Vol. 4, No. 6, 2014.
  8. Green, M., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D., "Solar cell efficiency tables (version 47)," Prog. Photovolt: Res. Appl., Vol. 24, pp. 3-11, 2016. https://doi.org/10.1002/pip.2728
  9. Green, M., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Ebinger, J. H., Yoshita, M., Ho-Boillie, A. W. Y., "Solar cell efficiency tables (version 53)," Prog. Photovolt: Res. Appl., Vol. 27, pp. 3-12, 2019. https://doi.org/10.1002/pip.3102
  10. Cariou, R., Benick, J., Feldmann, F., Hohn, O., Hauser, H., Beutel, P., Razek, N., Wimplinger, M., Blasi, B., Lackner, D., Hermle, M., Siefer, G., Glunz, S. W., Bett, A. W., Dimroth, F., "III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration," Nature Engergy, Vol. 3, p. 326-333, 2018. https://doi.org/10.1038/s41560-018-0125-0
  11. Essig, S., Allebe, C., Remo, T., Geisz, J. F., Steiner, M. A., Horowitz, K., Barraud, L., Ward, J. S., Schnabel, M., Descoeudres, A., Young, D. L., Woodhouse, M., Despeisse, M., Ballif, C., Tamboli, A., "Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions," Nature Energy, Vol. 2, p. 17144, 2017. https://doi.org/10.1038/nenergy.2017.144
  12. Feifel, M., Ohlmann, J., Benick, J., Hermle, M., Belz, J., Beyer, A., Volz, K., Hannappel, T., Bett, A. W., Lackner, D., Dimroth, F., "Direct Growth of III-V/Silicon Triple-Junction Solar Cells with 19.7% Efficiency," IEEE Journal of Photovoltaics, Vol. 8, No. 6, p. 1590, 2018. https://doi.org/10.1109/JPHOTOV.2018.2868015
  13. Almansouri, I., Ho-Baillie, A., Bremner, S. P., Green, M. A., "Supercharging Silicon Solar Cell Performance by Means of Multijunction Concept," IEEE Journal of Photovoltaics, Vol. 5, No. 3, p. 968, 2015. https://doi.org/10.1109/JPHOTOV.2015.2395140
  14. Chiu, P. T., Law, D. L., Woo, R. L., Singer, S., Bhusari, D., Hong, W. D., Zakaria, A., Boisvert, J. C., Mesropian, S., King, R. R., Karam, N. H., "35.8% space and 38.8% terrestrial 5J direct bonded cells," Proc. 40th IEEE Photovoltaic Specialist Conference, Denver, pp. 11-13, June 2014.
  15. White, T. P., Lal, N. N., Catchpole, K. R., "Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for > 30% Efficiency," IEEE Journal of Photovoltaics, Vol. 40, No. 1, p. 208, 2014. https://doi.org/10.1109/JPHOTOV.2013.2283342
  16. Kayes, B. M., Nie, H., Twist, R., Spruytte, S. G., Reinhardt, F., Kizilyalli, I. C., Higashi, G. S., "27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination," Proceeding of the 37th IEEE Photovoltaic Specialists Conference, 2011.
  17. Kim, S., Hwang, S. T., Yoon, W., Lee, H. M., "High performance GaAs solar cell using heterojunction emitter and its further improvement by ELO technique. Paper 4CV.1.127," European Photovoltaic Solar Energy Conference, Munich, June 2016.
  18. Yang, W. S., Noh, J. H., Jeon, N. J., et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, Vol. 349, No. 6240, pp. 1234-1237, 2015. https://doi.org/10.1126/science.aaa9272
  19. Tan, H., Moulin, E., Si, F., Schuttauf, J., Stuckelberger, M.M Isabella, O., Haug, F., Ballif, C., Zeman, M., Smets, A.H.M., "Highly transparent modulated surface textured front electrodes for high efficiency multijunction thin film silicon solar cells," Prog. Photovolt., Vol. 23, pp. 949-963, 2015. https://doi.org/10.1002/pip.2639
  20. Fang, J., Ren, Q., Wang, F., Wei, C., Yan, B., Zhao, Y., Zhang, X., "Amorphous silicon/crystal silicon heterojunction double-junction tandem solar cell with open-circuit voltage above 1.5 V and high short-circuit current density," Sol. Energy Mater. Sol. Cells, Vol. 185, pp. 307-311, 2018. https://doi.org/10.1016/j.solmat.2018.05.032
  21. Park, J., Dao, V. A., Kim, S., Pham, D. P., Kim, S., Le, A. H. T., Kang, J., Yi, J., "High efficiency Inorganic/Inorganic Amorphous Silicon/Heterojunction Silicon Tandem Solar Cells," Scientific Reports, Vol. 8, p. 15386, 2018. https://doi.org/10.1038/s41598-018-33734-y
  22. Yu, Z., Leilaeioun, M., Holman, Z., "Selecting tandem partners for silicon solar cells," Nature Energy, Vol. 1, pp. 1-4, 2016.
  23. Essig, S., et al., "Wafer-bonded GaInP/GaAs//Si solar cells with 30% efficiency under concentrated sunlight," IEEE J. Photovolt., Vol. 5, pp. 977-981, 2015. https://doi.org/10.1109/JPHOTOV.2015.2400212
  24. Bab, M., et al., "Feasibility study of two-terminal tandem solar cells integrated with smart stack, areal current matching, and low concentration," Prog. Photovolt. Res. Appl., Vol. 25, pp. 255-263, 2017. https://doi.org/10.1002/pip.2856
  25. Lee K. H., et al., "Assessing material qualities and efficiency limits of III-V on silicon solar cells using external radiative efficiency," Prog. Photovolt. Res. Appl., Vol. 24, pp. 1310-1318, 2016. https://doi.org/10.1002/pip.2787
  26. Chiu P. T., et al., "35.8% space and 38.8% terrestrial 5J direct bonded cells," Proc. 40th IEEE Photovolt. Spec. Conf. (PVSC), 2014.
  27. Dimroth F., et al., "Four-junction wafer-bonded concentrator solar cells," IEEE J. Photovolt., Vol. 6, pp. 343-349, 2016. https://doi.org/10.1109/JPHOTOV.2015.2501729
  28. Bolkhovityanov, Y. B., Pchelyakov, O. P., "GaAs epitaxy on Si substrates: modern status of reseach and engineering," Phys. Usp., Vol. 51, p. 437, 2008. https://doi.org/10.1070/PU2008v051n05ABEH006529
  29. Grassman, T. J., Chmielewski, D. J., Carnevale, S. D., Carlin, J. A., Ringel, S. A., "GaAsP/Si dual-junction solar cells grown by MBE and MOCVD," IEEE J. Photovolt., Vol. 6, pp. 326-331, 2016. https://doi.org/10.1109/JPHOTOV.2015.2493365
  30. Essig S., et al., "Wafer-bonded GaInP/GaAs//Si solar cells with 30.2% efficiency under concentrated sunlight," IEEE J. Photovolt., Vol. 5, pp. 977-981, 2015. https://doi.org/10.1109/JPHOTOV.2015.2400212
  31. Gee, J. M., Virshup, G. F., "A 31% efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cells," Proc. Conf. Record Twentieth IEEE Photovolt. Spec. Conf., 1988.
  32. Howlader, M. M. R., Selvaganapathy, P. R., Deen, M. J., Suga, T., "Nanobonding technology toward electronic, fluidic, and photonic systems intergration," IEEE J. Sel. Top. Quantum Electron., Vol. 17, No. 3, pp. 689-703, 2011. https://doi.org/10.1109/JSTQE.2010.2080261