DOI QR코드

DOI QR Code

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Hwajeong (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Lee, Chulyeon (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Youngkyoo (Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University)
  • Received : 2019.07.10
  • Accepted : 2019.09.19
  • Published : 2019.09.30

Abstract

Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.

Keywords

References

  1. Lee, T. D., Ebong, A. U., "A review of thin film solar cell technology and challenges," Renewable Sustainable Energy Rev., Vol. 70, pp. 1286-1297, 2017. https://doi.org/10.1016/j.rser.2016.12.028
  2. Husain, A. A. F., Hasan, W. Z. W., Shafie, S., Hamidon, M. N., Pandey, S. S., "A review of transparent solar photovoltaic technologies," Renewable Sustainable Energy Rev., Vol. 94, pp. 779-791, 2018. https://doi.org/10.1016/j.rser.2018.06.031
  3. Kim, K., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H., Kim, Y., "Organic solar cells based on conjugated polymers: history and recent advances," Korean J. Chem. Eng., Vol. 31, No. 7, pp. 1095-1104, 2014. https://doi.org/10.1007/s11814-014-0154-8
  4. Kim, B.-J., Park, E.-H., Kang, K.-S., "Optical properties of soluble polythiophene for flexible solar cells," Curr. Photovoltaic Res., Vol. 6, No. 4, pp. 91-93, 2018. https://doi.org/10.21218/CPR.2018.6.4.091
  5. Lee, S., Seo, J., Kim, H., Kim, Y., "Investigation of short-term stability in high efficiency polymer: nonfullerene solar cells via quick current-voltage cycling method," Korean J. Chem. Eng., Vol. 35, No. 12, pp. 2496-2503, 2018. https://doi.org/10.1007/s11814-018-0154-1
  6. Lee, S., Park, J., Kim, Y., Kim, S., Iftiquar, S., M., Yi, J., "New generation multijunction solar cells for achieving high efficiency". Curr. Photovoltaic Res., Vol. 6, No. 2, pp. 31-38, 2018. https://doi.org/10.21218/CPR.2018.6.2.031
  7. Zafar, M., Yun, J.-Y., Kim, D.-H., "Performance of inverted organic photovoltaic cells with nitrogen doped TiO2 films by atomic layer deposition," Korean J. Chem. Eng., Vol. 35, No. 2, pp. 567-573, 2018. https://doi.org/10.1007/s11814-017-0285-9
  8. Zheng, Z., Awartani, O. M., Gautam, B., Liu, D., Qin, Y., Li, W., Bataller, A., Gundogdu, K., Ade, H., Hou, J., "Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency," Adv. Mater., Vol. 29, No. 5, p. 1604241, 2017. https://doi.org/10.1002/adma.201604241
  9. Kim, J.-Y., Shin, K.-Y., Raza, M. H., Pinna, N., Sung, Y.-E., "Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications," Korean J. Chem. Eng., Vol. 36, No. 7, pp. 1157-1163, 2019. https://doi.org/10.1007/s11814-019-0280-4
  10. Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., Hou, J., "Molecular optimization enables over 13% efficiency in organic solar cells," J. Am. Chem. Soc., Vol. 139, No. 21, pp. 7148-7151, 2017. https://doi.org/10.1021/jacs.7b02677
  11. Yang, L., Zhang, S., He, C., Zhang, J., Yao, H., Yang, Y., Zhang, Y., Zhao, W., Hou, J., "New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells," J. Am. Chem. Soc., Vol. 139, No. 5, pp. 1958-1966, 2017. https://doi.org/10.1021/jacs.6b11612
  12. Jeong, J., Seo, J., Nam, S., Han, H., Kim, H., Anthopoulos, T. D., Bradley, D. D. C., Kim, Y., "Significant stability enhancement in high- efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light," Adv. Sci., Vol. 3, No. 4, p. 1500269, 2016. https://doi.org/10.1002/advs.201500269
  13. Sun, Y., Welch, G. C., Leong, W. L., Takacs, C. J., Bazan, G., C., Heeger, A. J., "Solution -processed small-molecule solar cells with 6.7% efficiency". Nat. Mater., Vol. 11, pp. 44-48, 2012. https://doi.org/10.1038/nmat3160
  14. Nielsen, C. B., Ashraf, R. S., Treat, N. D., Schroeder, B. C., Donaghey, J. E., White, A. J. P., Stingelin, N., McCulloch, I., "2,1,3-benzo thiadiazole-5,6-dicarboxylic imide -a versatile building block for additive-and annealing-free processing of organic solar cells with efficiencies exceeding 8%," Adv. Mater., Vol. 27, No. 5, pp. 948-953, 2015. https://doi.org/10.1002/adma.201404858
  15. Seo, J., Nam, S., Kim, H., Bradley, D. D. C., Kim, Y., "Nanocrater morphology in bybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability," Nanoscale Horiz., Vol. 4, pp. 464-471, 2019. https://doi.org/10.1039/C8NH00319J
  16. Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., Zuo, Y., Ni, W., Zhang, H., Li, M., Hu, Z., Huang, F., Cao, Y., Liang, Z., Zhang, M., Russell, T. P., Chen, Y., "Small-molecule solar cells with efficiency over 9%," Nat. Photonics, Vol. 9, pp. 35-41, 2015. https://doi.org/10.1038/nphoton.2014.269
  17. Park, E., Seo, J., Han, H., Kim, H., Kim, Y., "High-efficiency polymer:nonfullerene solar cells with quaterthiophene-containing polyimide interlayers," Adv. Sci., Vol. 5, No. 8, p. 1800331, 2018. https://doi.org/10.1002/advs.201800331
  18. Hou, J., Inganas, O., Friend, R. H., Gao, F., "Organic solar cells based on non-fullerene acceptors," Nat. Mater. Vol. 17, pp. 119-128, 2018. https://doi.org/10.1038/nmat5063
  19. Zhao, F., Dai, S., Wu, Y., Zhang, Q., Wang, J., Jiang, L., Ling, Q., Wei, Z., Ma, W., You, W., Wang, C., Zhan, X., "Single-junction binary- blend nonfullerene polymer solar cells with 12.1% efficiency," Adv. Mater. Vol. 29, No. 18, p. 1700144, 2017. https://doi.org/10.1002/adma.201700144
  20. Holliday, S., Ashraf, R. S., Wadsworth, A., Baran, D., Yousaf, S. A., Nielsen, C. B., Tan, C.-H., Dimitrov, S. D., Shang, Z., Gasparini, N., Alamoudi, M., Laquai, F., Brabec, C. J., Salleo, A., Durrant, J. R., McCulloch, I., "High- efficiency and air-stable P3HT-base polymer solar cells with new non-fullerene acceptor," Nat. Commun., Vol. 7, p.11585, 2016. https://doi.org/10.1038/ncomms11585
  21. Zhang, H., Yao, H., Hou, J., Zhu, J., Zhang, J., Li, W., Yu, R., Gao, B., Zhang, S., Hou, J., "Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small- molecule acceptors," Adv. Mater., Vol. 30, No. 28, p. 1800613, 2018. https://doi.org/10.1002/adma.201800613
  22. Yao, H., Ye, L., Hou, J., Jang, B., Han, G., Cui, Y., Su, G. M., Wang, C., Gao, B., Yu, R., Zhang, H., Yi, Y., Woo, H. Y., Ade, H., Hou, J., "Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage," Adv. Mater., Vol. 29, No. 21, p. 1700254, 2017. https://doi.org/10.1002/adma.201700254
  23. Fan, Q., Wang, Y., Zhang, M., Wu, B., Guo, X., Jiang, Y., Li, W., Guo, B., Ye, C., Su, W., Fang, J., Ou, X., Liu, F., Wei, Z., Sum, T. C., Russell, T. P., Li, Y., "High-performance as-cast non -fullerene polymer solar cells with thicker active layer and large area exceeding 11% power conversion efficiency," Adv. Mater., Vol. 30, No. 6, p. 1704546, 2018. https://doi.org/10.1002/adma.201704546
  24. Park, G. E., Choi, S., Park, S. Y., Lee, D. H., Cho, M. J., Choi, D. H., "Eco-friendly solvent- free fullerene-free polymer solar cells with over 9.7% efficiency and long-term performance stability," Adv. Energy Mater., Vol. 7, No. 19, p. 1700566, 2017. https://doi.org/10.1002/aenm.201700566
  25. Lee, S., Kim, H., Kim, Y., "Influence of physical load on the stability of organic solar cells with polymer:fullerene bulk heterojunction nanolayers," Curr. Photovoltaic Res., Vol. 4, No. 2, pp. 48-53, 2016. https://doi.org/10.21218/CPR.2016.4.2.048
  26. Xie, C., Heumuller, T. Gruber, W., Tang, X., Classen, A., Schuldes, I., Bidwell, M., Spath, A., Fink, R. H., Unruh, T., McCulloch, I., Li, N., Brabec, C. J., "Overcoming efficiency and stab -ility limits in water-processing nanoparticular organic photovoltaics by minimizing micro -structure defects," Nat. Commun., Vol. 9, p. 5335, 2018. https://doi.org/10.1038/s41467-018-07807-5
  27. Doumin, N. Y., Dryzhov, M. V., Houard, F. V., Corre, V. M. L., Chatri, A. R., Christodoulis, P., Koster, L. J. A., "Photostability of fullerene and non-fullerene polymer solar cells: the role of the acceptor," ACS Appl. Mater. Interfaces, Vol. 11, No. 8, pp. 8310-8318, 2019. https://doi.org/10.1021/acsami.8b20493
  28. Musavi, S. H., Jilavi, M. H., May, A., Schmitt, K. P., Schafer, B., de Oliveira, P. W., "A novel wet coating method using small amounts of solution on large flat substrates," Appl. Surf. Sci., Vol. 419, pp. 753-757, 2017. https://doi.org/10.1016/j.apsusc.2017.05.109
  29. Zhao, K., Hu, H., Spada, E., Jagadamma, L. K., Yan, B., Abdelsamie, M., Yang, Y., Yu, L., Munir, R., Li, R., Ndjawa, G. O. N., Amassian, A., "Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating," J. Mater. Chem. A, Vol. 4, pp. 16036-16046, 2016. https://doi.org/10.1039/C6TA06258J
  30. Chen, J., Zhang, L., Jiang, X., Gao, K., Liu, F., Gong, X., Chen, J., Cao, Y., "Using o-clorobenzaldehyde as a fast removable solvent additive during spin-coating PTB7-based active layers: high efficiency thick-film polymer solar cells," Adv. Energy Mater., Vol. 7, No. 3, p.1601344, 2017. https://doi.org/10.1002/aenm.201601344
  31. Nielsen, L. D., "Distributed series resistance effects in solar cells," IEEE Trans. Electron Devices, Vol. 29, No. 5, pp.821-827, 1982. https://doi.org/10.1109/T-ED.1982.20784