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SPACES†
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Abstract. In this manuscript, we provide some new results with short
proofs for the existence of Picard-Jungck operators in the framework of

generalized metric spaces using CG-simulation functions. An example is

also provided to illustrate the usability of the results.
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1. INTRODUCTION AND PRELIMINARIES

The study of the Picard operators is similar to the study of contractive-
type mappings in the setting of metric spaces. It is easy to see that almost all
contractive-type mappings on a complete metric space are Picard operators. In
the present paper, we propose a class of Picard-Jungck operators for a pair of
mappings on generalized metric spaces in the sense of Branciari [5] by taking
into account of the CG−simulation functions. Also some new results for the
existence of such operators for a pair of self mappings in the setting of metric
spaces are obtained. A nontrivial example is also provided to show the usability
of the results. The result proved here are short and generalize many known
results existing in the literature. For different variants of simulation function we
can obtain very interesting results.

To begin with, we have the following definitions, notations and results which
will be used in the sequel.

Definition 1.1. Let X be a nonempty set, and let d : X × X → [0,∞) be a
map such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them
is different from x and y:
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(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).
Then d is called a generalized metric on X and (X, d) is called a generalized

metric space.

Let (X, d) be a generalized metric space, let {xn} ⊂ X be a sequence, and
x ∈ X. Then we say that

(a) {xn} is convergent to x (denoted by limn→∞ xn = x) if and only if
limn→∞ d(xn, x) = 0;

(b) {xn} is Cauchy if and only if limn,m→∞ d(xn, xm) = 0;
(c) (X, d) is complete if and only if every Cauchy sequence inX is convergent

to some point in X.
(d) a mapping T : X → X is continuous at x ∈ X if, for any V ∈ τ

containing Tx, there exists U ∈ τ containing x such that TU ⊂ V ,
where τ is the topology on X induced by the generalized metric d. That
is,

τ = {U ⊂ X : ∀x ∈ U,∃B ∈ β, x ∈ B ⊂ U},
β = {B(x, r) : x ∈ X,∀r > 0},
B(x, r) = {y ∈ X : d(x, y) < r}.

If T is continuous at each point x ∈ X, then it is called continuous.
Note that T is continuous if and only if it is sequentially continuous, i.e.,

limn→∞ d(Txn, Tx) = 0 for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0.
If d is a generalized metric on X, then it is not continuous in each coordinate.
Now, here we define the C-class function as follows:

Definition 1.2. A mapping G : [0,+∞)2 → R is called a C-class function if it
is continuous and satisfies G (s, t) ≤ s for all s, t ∈ [0,+∞).

Definition 1.3. A mapping G : [0,+∞)2 → R has the property CG, if there
exists an CG ≥ 0 such that

(CG1) G (s, t) > CG implies s > t;
(CG2) G (t, t) ≤ CG, for all t ∈ [0,+∞).

Some examples of C-class functions that have property CG are as follows:
a) G (s, t) = s− t, CG = r, r ∈ [0,+∞);

b) G (s, t) = s− (2+t)t
1+t , CG = 0;

c) G (s, t) = s
1+kt , k ≥ 1, CG = r

1+k , r ≥ 2.

For more examples of C-class functions that have property CG see [3, 13] .

Definition 1.4. (see [13]) We define ZG as the family of all CG-simulation
functions ζ : [0,+∞)2 → R satisfying the following:

(ZG1) ζ (t, s) < G (s, t) for all t, s > 0, where G : [0,+∞)2 → R is a C-class
function;

(ZG2) if {tn} , {sn} are sequences in (0,+∞) such that limn→∞ tn = limn→∞ sn >
0, and tn < sn, then lim sup

n→∞
ζ (tn, sn) < CG.
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Some examples of simulation functions and CG-simulation functions are:
d) ζ (t, s) = s

s+1 − t for all t, s ≥ 0.

e) ζ (t, s) = s − ϕ (s) − t for all t, s ≥ 0, where ϕ : [0,+∞) → [0,+∞) is a
lower semi continuous function and ϕ (t) = 0 if and only if t = 0.

For more examples of simulation functions and CG-simulation functions see
[3, 6, 11, 13, 14, 18].

Each simulation function as in manuscript [11] is also a CG-simulation func-
tion as in Definition 1.4, but the converse is not true. For this claim see Example
3.3 of [6] using the C-class function G (s, t) = s− t. For examples of simulation
functions and CG-simulation functions see [3, 6, 9, 11, 12, 13, 14, 17, 18].

2. MAIN RESULTS

In this section, we establish some results on the existence and uniqueness of
Picard-Jungck operator for a pair of mappings by using CG−simulation functions
in the framework of generalized metric spaces. We begin with the following
definition.

Let (f, g) be pair of self mappings of a set X. Recall that if w = fx = gx
for some x ∈ X, then x is called a coincidence point of f and g, and w is called
a point of coincidence of f and g. The pair (f, g) is weakly compatible if f
and g commute at their coincidence points. A sequence {xn}n∈N∪{0} ⊆ X is a

Picard-Jungck sequence of the pair (f, g) (based on x0) if yn = fxn = fnx0 =
gxn+1 = gn+1x0 for all n ∈ N ∪ {0} (see also [6, Definition 4.4]).

A pair (f, g) is said to be a weakly Picard-Jungck operator (WPJO) if it has
a unique point of coincidence point z ∈ X and z = lim

n→∞
fnu = gn+1u for all

u ∈ X.
A pair (f, g) is said to be a Picard-Jungck operator (PJO) if it has a unique

common fixed point u ∈ X and u = lim
n→∞

fnu = gn+1u for all u ∈ X.

A self-mapping f is said to be a Picard operator if it has a unique fixed point
z ∈M and z = lim

n→∞
fnu for all u ∈ X.

A self-mapping f is said to be a weakly Picard operator if it has a fixed point
z ∈M and z = lim

n→∞
fnu for all u ∈ X.

Definition 2.1. Let Let (f, g) be a pair of self mappings on a generalized metric
space (X, d). An operator f is called a (ZG, g)-contraction if there exists ζ ∈ ZG

such that for all x, y ∈ X with d(fx, fy) > 0, we have

ζ (d (fx, fy) , d (gx, gy)) ≥ CG. (1)

Now to state our first new result for the notion of (ZG, g)-contraction, we
need the following result.

Lemma 2.2. Let (f, g) be a pair of self mappings on a generalized metric space
(X, d) and f be a (ZG, g)-contraction. Suppose that there exists a Picard-Jungck
sequence {yn}n∈N∪{0} of (f, g). Then the sequence {d(yn, yn+1)} is decreasing

and d(yn, yn+1)→ 0 as n→∞.
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Proof. Suppose that there is a Picard-Jungck sequence {yn} such that yn =
fxn = gxn+1 where n ∈ N ∪ {0}. Suppose that yn 6= yn+1 for all n ∈ N ∪ {0}.
Substituting x = xn+1, y = xn+2 in (1) we obtain that

CG ≤ ζ (d (fxn+1, fxn+2) , d (gxn+1, gxn+2)) = ζ (d (yn+1, yn+2) , d (yn, yn+1))

< G (d (yn, yn+1) , d (yn+1, yn+2)) .

Using (CG1) of Definition 1.3, we have d (yn, yn+1) > d (yn+1, yn+2). Hence, for
all n ∈ N ∪ {0} we get that d (yn+1, yn+2) < d (yn, yn+1).

Further we have to prove that yn 6= ym for n 6= m. Indeed, suppose that yn =
ym for some n > m. Then we choose xn+1 = xm+1 (which is obviously possible
by the definition of Picard-Jungck sequence {yn}) and hence also yn+1 = ym+1.
Then following the previous arguments, we have

d (yn, yn+1) < d (yn−1, yn) < · · · < d (ym, ym+1) = d (yn, yn+1) ,

which is a contradiction.
Therefore there exists D ≥ 0 such that limn→∞ d (yn, yn+1) = D ≥ 0. Sup-

pose that D > 0. Since d (yn+1, yn+2) < d (yn, yn+1) and both d (yn+1, yn+2)
and d (yn, yn+1) tend to D, using ZG2 of Definition 1.4, we get

CG ≤ lim sup
n→∞

ζ (d (yn+1, yn+2) , d (yn, yn+1)) < CG,

which is a contradiction. Hence limn→∞ d (yn, yn+1) = D = 0. �

Lemma 2.3. Let (f, g) be a pair of self mappings on a generalized metric
space (X, d) and f be a (ZG, g)-contraction. Suppose that there exists a Picard-
Jungck sequence {yn}n∈N∪{0} of (f, g). Then the Picard-Jungck sequence {yn}
is a Cauchy sequence.

Proof. Suppose that there is a Picard-Jungck sequence {yn} such that yn =
fxn = gxn+1 where n ∈ N ∪ {0}.

If yk = yk+1 for some k ∈ N ∪ {0}, then gxk+1 = yk = yk+1 = fxk+1 and
f and g have a point of coincidence. Therefore, suppose that yn 6= yn+1 for all
n ∈ N ∪ {0}. Using Lemma 2.2, we have d (yn+1, yn+2) < d (yn, yn+1) for all
n ∈ N ∪ {0} and limn→∞ d (yn, yn+1) = 0.

Now, we have to show that {yn} is a Cauchy sequence. Consider a real
sequence Sn = sup{d(yi, yj) : i, j ≥ n}. It is clear that 0 ≤ Sn+1 ≤ Sn <∞ for
all n ∈ N. Hence there exists s ≥ 0 such that lim

n→∞
Sn = s. Assume that s > 0

then by the assumption of Sn, for each k ∈ N there exists n(k),m(k) such that
m(k) > n(k) ≥ k with Sk − 1

k < d(ym(k), yn(k)) ≤ Sk. Hence

lim
k→∞

d(ym(k), yn(k)) = s. (2)

Putting x = xm(k)+1, y = xn(k)+1 in (1), we obtain

CG ≤ ζ
(
d
(
fxm(k)+1, fxn(k)+1

)
, d
(
gxm(k)+1, gxn(k)+1

))
< G

(
d
(
gxm(k)+1, gxn(k)+1

)
, d
(
fxm(k)+1, fxn(k)+1

))
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= G
(
d
(
ym(k), yn(k)

)
, d
(
ym(k)+1, yn(k)+1

))
(3)

Using (CG1) of Definition 1.3, it follows that d
(
ym(k), yn(k)

)
> d(ym(k)+1

, yn(k)+1). Since s > 0, lim
k→∞

d(ym(k), yn(k)) = lim
k→∞

d(ym(k)+1, yn(k)+1) > 0.

Therefore, using (3), we have

CG ≤ lim sup
n→∞

ζ
(
d
(
ym(k)+1, yn(k)+1

)
, d
(
ym(k), yn(k)

))
< CG,

which is a contradiction. Therefore, s = 0 and the Picard-Jungck sequence {yn}
is a Cauchy sequence. �

Now, we recall the following result of Abbas and Jungck [1] to be used in the
sequel.

Proposition 2.4. Let (f, g) be a pair of weakly compatible self mappings on a
set X. If f and g have a unique point of coincidence w = fx = gx, then w is a
unique common fixed point of f and g.

Theorem 2.5. Let (f, g) be a pair of self mappings on a generalized metric
space (X, d) and f be a (ZG, g)-contraction. Suppose that there exists a Picard-
Jungck sequence {yn}n∈N∪{0} of (f, g). Also assume that at least one of the

following conditions hold:
(i) (f (X) , d) or (g (X) , d) is complete;
(ii) (X, d) is complete, g is continuous and g(X) is closed subspace of X.
Then pair (f, g) is WPJO. Moreover, if f and g are weakly compatible, then

pair (f, g) is PJO.

Proof. First of all we shall prove that the point of coincidence of f and g is
unique (if it exists). Suppose that z1 and z2 are distinct points of coincidence
of f and g. From this it follows that there exist two points v1 and v2 (v1 6= v2)
such that fv1 = gv1 = z1 and fv2 = gv2 = z2. Then (1) implies that

CG ≤ ζ (d (fv1, fv2) , d(gv1, gv2))

= ζ (d (z1, z2) , d (z1, z2))

< G (d (z1, z2) , d (z1, z2)) ≤ CG,

which is a contradiction.
In order to prove that a pair (f, g) is WPJO, suppose that there is a Picard-

Jungck sequence {yn} such that yn = fxn = gxn+1 where n ∈ N ∪ {0}.
If yk = yk+1 for some k ∈ N ∪ {0}, then gxk+1 = yk = yk+1 = fxk+1 and

f and g have a point of coincidence. Therefore, suppose that yn 6= yn+1 for all
n ∈ N ∪ {0}. Using Lemma 2.2, we have d (yn+1, yn+2) < d (yn, yn+1) for all
n ∈ N ∪ {0} and limn→∞ d (yn, yn+1) = 0. Now, using Lemma 2.3, we obtain
that Picard-Jungck sequence {yn} is a Cauchy sequence.

Suppose that (i) holds, i.e., (g (X) , d) is complete. Then there exists v ∈ X
such that yn−1 = fxn−1 = gxn → gv as n → ∞. We shall prove that fv = gv.
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It is clear that we can suppose yn 6= fv, gv for all n ∈ N ∪ {0}. Suppose that
d(fv, gv) > 0 and using (1) and (ZG1), we have

CG ≤ ζ (d (fxn, fv) , d (gxn, gv)) < G (d (gxn, gv) , d (fxn, fv)) .

Taking n→∞, we have CG ≤ ζ (d (gv, fv) , d (gv, gv)) < G (d (gv, gv) , d (gv, fv)).
Using (CG1) of Definition 1.3, we get d (gv, fv) < d (gv, gv), which is a contra-
diction. Hence, fv = gv is a (unique) point of coincidence of f and g.

Similarly, we can prove that fv = gv is a (unique) point of coincidence of f
and g, when (f (X) , d) is complete.

Finally, suppose that (ii) holds. Since (X, d) is complete, then there exists
v ∈ X such that yn = fxn → v, when n → ∞. As g is continuous, and g(X)
is a closed subspace of X. Then, we choose u ∈ X such that yn = g(xn+1) →
g(u) = v when n→∞. Suppose that d(fu, v) > 0. Consider

CG ≤ ζ (d (f (xn) , fu) , d (gxn, gu)) < G (d (gxn, gu) , d (f (xn) , fu)) .

Taking n→∞, we have CG ≤ ζ (d (v, fu) , d (gu, gu)) < G (d (gu, gu) , d (v, fu)).
Using (CG1) of Definition 1.3, we get d (v, fu) < d (gu, gu). Hence, fu = gu = v
is a (unique) point of coincidence of f and g. Hence, the result is proved in both
the cases.

Further, since f and g are weakly compatible, then according to Proposition
2.4, they have a unique common fixed point. �

Remark 2.1. Theorem 2.5 holds true if, in particular, (X, d) is complete, g is
continuous and f and g are commuting.

Corollary 2.6. Let (X, d) be a complete generalized metric space, f : X → X
be self-mappings and f satisfies

ζ (d (fx, fy) , d (x, y)) ≥ CG,

for all x, y ∈ X with d(fx, fy) > 0 and ζ ∈ ZG. Suppose that there exists a
Picard sequence {un} ⊆M by un+1 = fnu0 = fun for all n ∈ N ∪ {0}. Then f
is a Picard operator.

Corollary 2.7. Let (X, d) be a complete generalized metric space and let f :
X → X be a self mapping. If there exist n ∈ N such that fn satisfies

ζ (d (fnx, fny) , d (x, y)) ≥ CG,

for all x, y ∈ X with d(fnx, fny) > 0 and ζ ∈ ZG. Then f is a Picard operator.

Proof. From Corollary 2.6, it is obvious that fn is a Picard operator, thus there
exists a unique z ∈ X such that fnz = z and lim

m→∞
(fnu)

m
= z, for all u ∈ X.

Also, we observe that fn+1z = fnz, that is fn(fz) = fz, thus fz is also a fixed
point of fn. Thus fz = z.
Further, if z∗ is another fixed point of f , then it must be a fixed point of fn.
Hence z = z∗. Therefore f has a unique fixed point.
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Now, let m be a positive integer greater than n. Then there exist l ≥ 1 and
s ∈ {0, 1, 2, ..., n− 1} such that m = nl + s. Here, we notice that

lim
m→∞

fmu = lim
l→∞

fnl(fsu) = z.

Hence the result. �

Example 2.8. Let X = {1, 2, 3, 4}. Define the metric d : X ×X → [0,∞) by
d(1, 2) = d(2, 1) = 3, d(1, 3) = d(3, 1) = d(2, 3) = d(3, 2) = 1, d(1, 4) = d(4, 1) =
d(2, 4) = d(4, 3) = d(3, 4) = 4 and d(x, x) = 0, for all x ∈ X. Then (X, d) is a
complete generalized metric space but not a metric space.

Define a function f : X → X as f(1) = 3, f(2) = 3, f(3) = 3, f(4) = 1.

Here, d(fx, fy) =


d(1, 3) = 1, (x = 4, y 6= 4), (x 6= 4, y = 4)

d(1, 1) = 0, (x = 4, y = 4)

d(3, 3) = 0, (x 6= 4, y 6= 4)

So d(fx, fy) > 0 if and only if x = 4, y 6= 4.
However, putting ζ (t, s) = G (s, t) − t, G (s, t) = m s,m < 1, CG = 0, we

have that f is a Z-contraction with respect to ζ.
Consider x = 4, y 6= 4 (or x 6= 4, y = 4 ). We have

ζ (d (fx, fy) , d (x, y)) ≥ CG = 0⇔ md (x, y)− d (fx, fy) ≥ 0.

Hence 4m− 1 > 0, for all m ∈ ( 1
4 , 1).

Thus all the conditions of Corollary 2.6 are satisfied and 3 is a unique fixed
point of f .

Here it is to note that Banach’s contraction is not satisfied with usual metric
d(x, y) = |x− y|. If we choose x = 2, y = 4, d(fx, fy) = d(f2, f4) = d(3, 1) = 2,
then d(fx, fy) ≤ k d(x, y), k ∈ (0, 1), implies that k ≥ 1.

Let (X, d) be a metric space and T : X → X be a self mapping. It is said
that T has Property P if F (T ) = F (Tn) for each n ∈ N, where F (T ) denotes
the set of all fixed points of T .

We will now present results regarding the property P for some well-known
types of self-mappings.

Theorem 2.9. If T : X → X satisfies

ζ (d (Tx, Ty) , d (x, y)) ≥ CG,

for all x, y ∈ X, and some ζ ∈ ZG , then T has Property P .

Proof. Let u ∈ F (Tn), n > 1. If u 6= Tu, then we have

CG ≤ ζ
(
d
(
TTn−1u, TTnu

)
, d
(
Tn−1u, Tnu

))
< G(d

(
Tn−1u, Tnu

)
, d
(
TTn−1u, TTnu

)
)

= G(d
(
Tn−1u, u

)
, d
(
u, Tn+1u

)
).
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It follows from (CG1) that d
(
Tn−1u, u

)
> d

(
u, Tn+1u

)
= d(u, Tu). Therefore,

we get

d (u, Tu) = d
(
Tnu, Tn+1u

)
< d

(
Tn−1u, Tnu

)
< d

(
Tn−2u, Tn−1u

)
< · · · < d (u, Tu) ,

which is impossible.
We use the fact that d

(
u, Tn+1u

)
= d (u, Tu) and d

(
Tn−1u, u

)
are both

positive numbers. Hence the result. �

Finally, we have the following open question: Does the following claim hold
using (ZG, g)-quasi-contraction of Ćirić-Das-Naik type?

Definition 2.10. Let (f, g) be a pair of self mappings on a generalized metric

space (X, d). A mapping f is called a (ZG, g)-quasi-contraction of Ćirić-Das-
Naik type if there exist ζ ∈ ZG, λ ∈ (0, 1) such that

ζ (d (fx, fy) , λmax {d (gx, gy) , d (gx, fx) , d (gy, fy) , d (gx.fy) , d (gy, fx)}) ≥ CG

for all x, y ∈ X with d(fx, fy) > 0.

In the case that g = iX (identity mapping on X) and CG = 0 we get a

Z-quasi-contraction of Ćirić type.

Claim. Let f be a (ZG, g)-quasi-contraction of Ćirić-Das-Naik type in a gener-
alized metric space (X, d) and suppose that there exists a Picard-Jungck sequence
{xn}n∈N∪{0} of (f, g). Also assume that at least one of the following conditions

hold:
(i) (f (X) , d) or (g (X) , d) is complete;
(ii) (X, d) is complete and f and g are continuous and compatible.
Then pair (f, g) is WPJO.
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