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Abstract. In this work, via Orlicz functions, we have obtained a general-

ization of rough statistical convergence of asymptotically equivalent triple
sequences a new non-matrix convergence method, which is intermediate

between the ordinary convergence and the rough statistical convergence.
We also have examined some inclusion relations related to this concept.

We obtain the results are non negative real numbers with respect to the

partial order on the set of real numbers.
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1. Introduction

Let K be a subset of the set of positive integers N×N×N, and let us denote
the set {(m,n, k) ∈ K : m ≤ u, n ≤ v, k ≤ w} by Kuvw. Then the natural density

of K is given by δ (K) = limu,v,w→∞
|Kuvw|
uvw , if the limit exists, where |Kuvw|

denotes the number of elements in Kuvw. Clearly, a finite subset has natural
density zero, and we have δ (Kc) = 1−δ (K) where Kc = N\K is the complement
of K. If K1 ⊆ K2, then δ (K1) ≤ δ (K2) .

The triple sequence x = (xmnk) is said to be rough statistically convergent
to l if for every ε > 0, the set Kε =

{
(m,n, k) ∈ N3 : |xmnk − l| ≥ β + ε

}
has

natural density zero, for each ε > 0,

limr,s,t→∞
1

rst
|{(m,n, k) ≤ (r, s, t) : |xmnk − l| ≥ β + ε}| = 0.

In this case, we write l = st − limx. Throughout the paper, R denotes the
real of three dimensional space with metric (X, d) . Consider a triple sequence
x = (xmnk) such that xmnk ∈ R,m, n, k ∈ N.
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A triple sequence x = (xmnk) is said to be statistically convergent to 0 ∈ R,
written as st− lim x = 0, provided that the set{

(m,n, k) ∈ N3 : |xmnk, 0| ≥ ε
}

has natural density zero for any ε > 0. In this case, 0 is called the statistical
limit of the triple sequence x.

If a triple sequence is statistically convergent, then for every ε > 0, infinitely
many terms of the sequence may remain outside the ε− neighbourhood of the
statistical limit, provided that the natural density of the set consisting of the
indices of these terms is zero. This is an important property that distinguishes
statistical convergence from ordinary convergence. Because the natural density
of a finite set is zero, we can say that every ordinary convergent sequence is
statistically convergent.

If a triple sequence x = (xmnk) satisfies some property P for all m,n, k except
a set of natural density zero, then we say that the triple sequence x satisfies P
for almost all (m,n, k) and we abbreviate this by a.a. (m,n, k).

Let
(
xminjk`

)
be a sub sequence of x = (xmnk). If the natural density of the

set K =
{

(mi, nj , k`) ∈ N3 : (i, j, `) ∈ N3
}

is different from zero, then
(
xminjk`

)
is called a non thin sub sequence of a triple sequence x.
c ∈ R is called a statistical cluster point of a triple sequence x = (xmnk)

provided that the natural density of the set{
(m,n, k) ∈ N3 : |xmnk − c| < ε

}
is different from zero for every ε > 0. We denote the set of all statistical cluster
points of the sequence x by Γx.

A triple sequence x = (xmnk) is said to be statistically analytic if there exists
a positive number M such that

δ
({

(m,n, k) ∈ N3 : |xmnk|1/(m+n+k) ≥M
})

= 0

The theory of statistical convergence has been discussed in trigonometric se-
ries, summability theory, measure theory, turnpike theory, approximation the-
ory, fuzzy set theory and so on.

The idea of rough convergence was introduced by Phu [18], who also intro-
duced the concepts of rough limit points and roughness degree. The idea of
rough convergence occurs very naturally in numerical analysis and has interest-
ing applications. Aytar [1] extended the idea of rough convergence into rough
statistical convergence using the notion of natural density just as usual conver-
gence was extended to statistical convergence. Pal et al. [17] extended the notion
of rough convergence using the concept of ideals which automatically extends
the earlier notions of rough convergence and rough statistical convergence.

Let (X, ρ) be a metric space. For any non empty closed subsets A,Amnk ⊂
X (m,n, k ∈ N) , we say that the triple sequence (Amnk) is Wijsman statistical
convergent to A is the triple sequence (d (x,Amnk)) is statistically convergent to
d (x,A), i.e., for ε > 0 and for each x ∈ X

limr,s,t
1
rst |{m ≤ r, n ≤ s, k ≤ t : |d (x,Amnk)− d (x,A)| ≥ ε}| = 0.
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In this case, we write St − limm,n,kAmnk = A or Amnk −→ A (WS) . The
triple sequence (Amnk) is bounded if supmnkd (x,Amnk) <∞ for each x ∈ X.

A triple sequence (real or complex) can be defined as a function x : N×N×N→
R (C) , where N,R and C denote the set of natural numbers, real numbers and
complex numbers respectively. The different types of notions of triple sequence
was introduced and investigated at the initial by Sahiner et al. [19,20], Esi et
al. [5-10], Dutta et al. [3], Subramanian et al. [22-27], Debnath et al. [4], Aiyub
et al. [2] and Zweier sequence was introduced and investigated at the initial by
Fadile Karababa et al. [11], Sharma et al. [21], Khan et al. [14] , Hazarika et
al. [12] , Velmurugan et al. [28] many others.

Throughout the paper let β be a nonnegative real number.
By using Orlicz functions, we have defined a generalization of rough statistical
convergence of asymptotically equivalent of triple sequences and obtained some
inclusion relations related to this concept.

2. Definition and Preliminaries

Definition 2.1. An Orlicz function ([see [13]) is a function M : [0,∞)→ [0,∞)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for
x > 0 and M (x)→∞ as x→∞. If convexity of Orlicz function M is replaced
by M (x+ y) ≤M (x) +M (y) , then this function is called modulus function.

Lindenstrauss and Tzafriri ([15]) used the idea of Orlicz function to construct
Orlicz sequence space.

A sequence g = (gmnk) defined by

gmnk (v) = sup {|v|u− (fmnk) (u) : u ≥ 0} ,m, n, k = 1, 2, · · ·
is called the complementary function of a Musielak-Orlicz function f . For a
given Musielak-Orlicz function f, [see [16] ] the Musielak-Orlicz sequence space
tf is defined as follows

tf =
{
x ∈ w3 : If (|xmnk|)1/(m+n+k) → 0asm, n, k →∞

}
,

where If is a convex modular defined by

If (x) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk (|xmnk|)1/(m+n+k)
, x = (xmnk) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk

(
|xmnk|1/(m+n+k)

mnk

)
is an extended real number.

Definition 2.2. Let f be an unbounded Orlicz function. Two non negative
triple sequences x = (xmnk) and y = (ymnk) are said to be asymptotically f−
rough statistical equivalent of multiple l provided that for every β, ε > 0

df
({

(m,n, k) ≤ (r, s, t) :
∣∣∣xmnkymnk

− l
∣∣∣ ≥ β + ε

})
= 0,
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that is,

limr,s,t→∞
1

f(rst)f
(∣∣∣{(m,n, k) ≤ (r, s, t) :

∣∣∣xmnkymnk
− l
∣∣∣ ≥ β + ε

}∣∣∣) = 0,

it is denoted by x
rsfl≡ y and simply asymptotically f− rough statistical equivalent

if l = 1. Further more, let rsfl denote the set of x and y such that x
rsfl≡ y.

Definition 2.3. Two non negative triple sequences x = (xmnk) and y = (ymnk)
are said to be strong Cesaro asymptotically equivalent of multiple l with respect
to an Orlicz function f provided that

limr,s,t→∞
1
rst

r∑
m=1

s∑
n=1

t∑
k=1

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣) = 0

it is denoted by x
wfl≡ y and simply strong Cesaro asymptotically equivalent if

l = 1. In addition, let wfl denote the set of x and y such that x
wfl≡ y.

3. Main results

Theorem 3.1. Let f be any unbounded Orlicz function for which limt→∞

(
f(t)
t

)
>

0 and c be a positive constant such that f (xy) ≥ c f (x) f (y) for all x ≥ 0, y ≥ 0.

If x
wfl≡ y then x

rsfl≡ y.

Proof. Let f be any unbounded Orlicz function for which limt→∞

(
f(t)
t

)
> 0

and c be a positive constant such that f (xy) ≥ c f (x) f (y) for all x ≥ 0, y ≥ 0.

For x
wfl≡ y and β, ε ∈ (0,∞) , we have

1
rst

r∑
m=1

s∑
n=1

t∑
k=1

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣) ≥ 1

rst
f

(
r∑

m=1

s∑
n=1

t∑
k=1

∣∣∣∣xmnkymnk
− l
∣∣∣∣
)

≥ 1
rstf

 r∑
m=1

s∑
n=1

t∑
k=1,

∣∣∣ xmnkymnk
−l
∣∣∣≥β+ε

∣∣∣∣xmnkymnk
− l
∣∣∣∣


≥ 1
rstf

(∣∣∣{(m,n, k) ≤ (r, s, t) :
∣∣∣xmnkymnk

− l
∣∣∣ ≥ β + ε

}∣∣∣ · (β + ε)
)

≥ c
rstf

(∣∣∣{(m,n, k) ≤ (r, s, t) :
∣∣∣xmnkymnk

− l
∣∣∣ ≥ β + ε

}∣∣∣) · f (β + ε)

= 1
f(rst)f

(∣∣∣{(m,n, k) ≤ (r, s, t) :
∣∣∣xmnkymnk

− l
∣∣∣ ≥ β + ε

}∣∣∣) · f(rst)rst · c · f (β + ε)

=⇒ x
rsfl≡ y �

Theorem 3.2. If x
rsfl≡ y, then x

rsl≡ y

Proof. Suppose that x
rsfl≡ y. Then by the definition of the limit and the fact that

f being Orlicz function is subadditive, for every p ∈ N, there exists (r0s0t0) ∈ N
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such that for (rst) ≥ (r0s0t0) , we have

f
(∣∣∣{(m,n, k) ≤ (r, s, t) :

∣∣∣xmnkymnk
− l
∣∣∣ ≥ β + ε

}∣∣∣) ≤ 1
pf (rst) ≤ 1

p · p · f (rst) =

f
(
rst
p

)
and since f is non-decreasing function, we have

1
rstf

(∣∣∣{(m,n, k) ≤ (r, s, t) :
∣∣∣xmnkymnk

− l
∣∣∣ ≥ β + ε

}∣∣∣) ≤ 1
p .

Hence x
rsl≡ y. �

Corollary 3.3. Let f be an unbounded Orlicz function such that limt→∞
f(t)
t > 0

and c be a positive constant such that f (xy) ≥ c ·f (x) ·f (y) for all x ≥ 0, y ≥ 0.

If x
wfl≡ y, then x

rsl≡ y

Proof. It is followed by result of Theorem (3.1) and Theorem (3.2). �

Theorem 3.4. If x ∈ `3∞ (the space of all bounded real valued triple sequences)

and x
rsfl≡ y, then x

wfl≡ y for any unbounded Orlicz function f.

Proof. Suppose that x = (xmnk) ∈ `3∞ and x
rsfl≡ y. Then we can assume that

there exists M > 0 such that ∣∣∣xmnkymnk
− l
∣∣∣ ≤M

for all m,n, k. Given β, ε > 0

1

rst

r∑
m=1

s∑
n=1

t∑
k=1

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣)

=
1

rst

r∑
m=1

s∑
n=1

t∑
k=1,

∣∣∣ xmnkymnk
−l
∣∣∣>β+ε

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣)

+
1

rst

r∑
m=1

s∑
n=1

t∑
k=1,

∣∣∣ xmnkymnk
−l
∣∣∣<β+ε

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣)

≤ 1

rst
f

(∣∣∣∣{(m,n, k) ≤ (r, s, t) :

∣∣∣∣xmnkymnk
− l
∣∣∣∣ ≥ β + ε

}∣∣∣∣) · f (M)

+
1

rst
· rst · f (β + ε) .

Taking limit on both sides as (r, s, t)→∞, we get

lim(r,s,t)→∞
1
rst

r∑
m=1

s∑
n=1

t∑
k=1

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣) = 0, by Theorem (3.2) and the fact

that f is non-decreasing function. �
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Theorem 3.5. Let f be an Orlicz function such that limt→∞
f(t)
t > 0. If x

wfl≡ y

then x
wl≡ y.

Proof. We have η = limt→∞
f(t)
t = inf

{
f(t)
t : t > 0

}
. By definition of η, we

have f(t)
t ≥ η for all t ≥ 0. Since η > 0, we have t

f(t) ≤ η
−1. Hence

1
rst

r∑
m=1

s∑
n=1

t∑
k=1

∣∣∣∣xmnkymnk
− l
∣∣∣∣

=
1

rst

r∑
m=1

s∑
n=1

t∑
k=1

∣∣∣∣xmnkymnk
− l
∣∣∣∣ · 1

f
(∣∣∣xmnkymnk

− l
∣∣∣) · f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣)

≤ η−1 · 1
rst

r∑
m=1

s∑
n=1

t∑
k=1

f

(∣∣∣∣xmnkymnk
− l
∣∣∣∣)

=⇒ x
wl≡ y. �

Theorem 3.6. For any Orlicz function f, if x
wl≡ y, then x

wfl≡ y.

Proof. It is similar to Theorem (3.2). �

Corollary 3.7. Let f be any Orlicz function such that limt→∞
f(t)
t > 0. Then

x
wfl≡ y ⇔ x

wl≡ y.

4. x
rsfl≡ y− equivalence of rough triple sequences

Let x = (xmnk) and y = (ymnk) be two rough triple sequences of nonnegative
real numbers. We use the notation ”x ≺ y” if xmnk ≤ ymnk holds for all
m,n, k ∈ N. In this section discuss the results for nonnegative real numbers with
respect to the partial order on the set of real numbers.

Theorem 4.1. Let f be an unbounded Orlicz function. If z ≺ x and x− z
rsf
l
′

≡ y

then x
rsfl≡ y =⇒ z

rsf

(l−l′)
≡ y.

Proof. Suppose that x − z
rsf
l
′

≡ y. We need z ≺ x to be a rough triple sequence
x− z = xmnk− zmnk to be a rough triple sequence of nonnegative real numbers.
Then ∣∣∣ zmnkymnk

−
(
l − l′

)∣∣∣ ≤ ∣∣∣xmnkymnk
− l
∣∣∣+
∣∣∣xmnk−zmnkymnk

− l′
∣∣∣

holds for all m,n, k ∈ N. Then for a given β, ε > 0 the following inequality∣∣∣{(m,n, k) ≤ (r, s, t) :
∣∣∣ zmnkymnk

−
(
l − l′

)∣∣∣ ≥ β + ε
}∣∣∣ ≤∣∣∣{(m,n, k) ≤ (r, s, t) :

∣∣∣xmnkymnk
− l
∣∣∣ ≥ β+ε

2

}∣∣∣+
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∣∣∣xmnk−zmnkymnk

− l′
∣∣∣ ≥ β+ε

2

}∣∣∣ is satisfied. Since f is an un-

bounded nondecreasing Orlicz function, we obtain
f
(∣∣∣{(m,n,k)≤(r,s,t):∣∣∣ zmnkymnk

−
(
l−l
′)∣∣∣≥β+ε}∣∣∣)

f(rst) ≤
f
(∣∣∣{(m,n,k)≤(r,s,t):∣∣∣ xmnkymnk

−l
∣∣∣≥ β+ε2

}∣∣∣)
f(rst) +

f
(∣∣∣{(m,n,k)≤(r,s,t):∣∣∣ xmnk−zmnkymnk

−l
′ ∣∣∣≥ β+ε2

}∣∣∣)
f(rst) .

Taking the limit (r, s, t)→∞. Hence the result is obtained. �

Corollary 4.2. Let f be an unbounded Orlicz function. If y ≺ z and x
rsf
l
′

≡ z−y

then x
rsfl≡ y =⇒ x

rsf1
l”≡ z, where l” = 1

l + 1
l′
.
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