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1. Introduction

In 1969, Belluce and Kirk [3] introduced the concept of diminishing orbital
diameters and obtained some fixed point theorems for nonexpansive mappings,
which deal with diminishing orbital diameters. Since then, an increasing number
of researchers have generalized Belluce and Kirk’s results, for instance, see [10,
12–16, 21]. In 1996, Liu [12] presented the following fixed point theorem for
contractive mappings with diminishing orbital diameters.

Theorem 1.1. [12] Let f be a self mapping of a complete bounded metric space
(X, d) and b ∈ (0, 1) satisfying

d(fx, fy) ≤ bδ(Of (x, y)), ∀x, y ∈ X. (1.1)

Then
(a1) f has diminishing orbital diameters;
(a2) f has a unique fixed point.

In 1999, Liu [13] proved the following fixed point theorems for general con-
tractive type mappings.
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Theorem 1.2. [13] Let f be a self mapping of a metric space (X, d) and p, q ∈ N.
Suppose that there exist u ∈ X and ϕ ∈ Φ6 such that

Of (u) has a cluster point v ∈ X and δ(Of (u, v)) < +∞; (1.2)

f is closed at v; (1.3)

d(fpx, fqy) ≤ ϕ(δ(Of (x, y))), ∀x, y ∈ Of (u, v). (1.4)

Then f has a unique fixed point v ∈ Of (u) and fnu→ v as n→∞.

Theorem 1.3. [13] Let f be a self mapping of a metric space (X, d) and q ∈
{1, 2}. Suppose that there exist ϕ ∈ Φ6 and u, v ∈ X such that

Of (u) has a cluster point v ∈ X and δ(Of (u, v)) < +∞; (1.5)

d(fx, fqy) ≤ ϕ(δ(Of (x, y))), ∀x, y ∈ Of (u, v). (1.6)

Then f has a unique fixed point v ∈ Of (u) and fnu→ v as n→∞.

On the other hand, in 2002, Branciari [4] introduced the notion of contractive
mappings of integral type in metric spaces and proved the following fixed point
theorem, which generalizes the Banach fixed point theorem.

Theorem 1.4. [4] Let f be a mapping from a complete metric space (X, d) into
itself satisfying ∫ d(fx,fy)

0

ϕ(t)dt ≤ c
∫ d(x,y)

0

ϕ(t)dt, ∀x, y ∈ X, (1.7)

where ϕ ∈ Φ1 and c ∈ (0, 1) is a constant. Then f has a unique fixed point
u ∈ X such that limn→∞ fnx = u for each x ∈ X.

Afterwards many researchers continued the study of Branciari and obtained
a lot of fixed point theorems for various contractive mappings of integral type,
see, for example, [1, 5, 9, 15,17,19] and the references cited therein.

Motivated by the results in [1–21], in this paper we introduce a few contractive
mappings of integral type and show the existence and uniqueness of fixed point
and properties of diminishing orbital diameters for these mappings in complete
metric spaces. The results obtained in this paper extend Theorem 5 in [12].
Four examples are given.

2. Preliminaries

Throughout this paper, we assume that R+ = [0,+∞), N0 = {0} ∪ N, where
N denotes the set of all positive integers and

Φ1 =
{
φ | φ : R+ → R+ is Lebesgue integrable and summable in each compact

subset of R+ and
∫ ε
0
φ(t)dt > 0,∀ε > 0

}
;

Φ2 =
{
φ | φ : R+ → R+ is nondecreasing, upper semicontinuous in R+ \ {0}

and φ(t) < t,∀t > 0
}

;

Φ3 =
{
φ | φ : R+ → R+ is nondecreasing, continuous in R+ and φ(t) >

0,∀t > 0
}

;
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Φ4 =
{
φ | φ belongs to Φ1 and

∫ a+b
0

φ(t)dt ≤
∫ a
0
φ(t)dt+

∫ b
0
φ(t)dt,∀a, b > 0

}
;

Φ5 =
{
φ | φ : R+ → R+ is nondecreasing, continuous in R+, φ−1(0) = {0}

and φ(a+ b) ≤ φ(a) + φ(b),∀a, b > 0
}

;

Φ6 =
{
φ | φ : R+ → R+ is nondecreasing and limn→∞ φn(t) = 0,∀t > 0

}
.

Let (X, d) be a metric space. For f : X → X, x, y ∈ X and A ⊆ X, put

Of (x) = {fnx : n ∈ N0}, Of (x, y) = Of (x) ∪Of (y),

δ(A) = sup{d(a, b) : ∀a ∈ A, b ∈ A}
and Of (x) denotes the closure of Of (x).

Definition 2.1. Let (X, d) be a metric space and A ⊆ X. A mapping f : A→
A is said to have diminishing orbital diameters in A if limn→∞ δ(Of (fnx)) <
δ(Of (x)) for all x ∈ A with δ(Of (x)) > 0.

Definition 2.2. [5] Let (X, d) be a metric space, A ⊆ X and An ⊆ X for n ∈ N.
The sequence {An}n∈N is said to converge to the set A if

(b1) each point a ∈ A is the limit of some convergent sequence {an : an ∈ An
for each n ∈ N};

(b2) for arbitrary ε > 0, there exists k ∈ N such that An ⊆ Aε for n > k,
where Aε is the union of all open spheres with centers in A and radius ε.

Lemma 2.3. [16] Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with
limn→∞ rn = a. Then

lim
n→∞

∫ rn

0

ϕ(t)dt =

∫ a

0

ϕ(t)dt.

Lemma 2.4. [16] Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn

0

ϕ(t)dt = 0

if and only if
lim
n→∞

rn = 0.

3. Fixed point theorems

Our main results are as follows.

Theorem 3.1. Let f be a self mapping of a metric space (X, d). Assume that
there exist (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, u ∈ X and p, q ∈ N such that

Of (u) has a cluster point v ∈ X and δ(Of (u, v)) < +∞; (3.1)

f is closed at v; (3.2)∫ ψ(d(fpx,fqy))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
, ∀x, y ∈ Of (u, v). (3.3)

Then
(c1) f has diminishing orbital diameters in Of (u, v);
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(c2) f has a unique fixed point v in Of (u, v);
(c3) limn→∞ fnx = v, ∀x ∈ Of (u, v);

(c4) {Of (fnu)}n∈N converges to {v}.

Proof. Let r = max{p, q} and x be inOf (u, v). Since δ(Of (fn+1x)) ≤ δ(Of (fnx))
for each n ∈ N0, it follows that {δ(Of (fnx))}n∈N0

converges to some a0 ≥ 0.
Now we claim that a0 = 0. If not, then a0 > 0 and limn→∞ δ(Of (fnx)) = a0.
For all m,n ∈ N and i, j ∈ N0, by (3.3) and (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3, we arrive
at ∫ ψ(d(fn+r+ix,fm+r+jx))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (f

n+r−p+ix,fm+r−q+jx)))

0

ϕ(t)dt

)
≤ φ

(∫ ψ(δ(Of (f
hx)))

0

ϕ(t)dt

)
,

where h = min{m,n}. It follows that∫ ψ(δ(Of (f
n+rx)))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (f

nx)))

0

ϕ(t)dt

)
, ∀n ∈ N. (3.4)

Letting n tend to infinity in (3.4) and using (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma
2.3, we have

0 <

∫ ψ(a0)

0

ϕ(t)dt = lim sup
n→∞

∫ ψ(δ(Of (f
n+rx)))

0

ϕ(t)dt

≤ lim sup
n→∞

φ

(∫ ψ(δ(Of (f
nx)))

0

ϕ(t)dt

)
≤ φ

(∫ ψ(a0)

0

ϕ(t)dt

)
<

∫ ψ(a0)

0

ϕ(t)dt,

which is impossible. That is, a0 = 0. Therefore f has diminishing orbital
diameters in Of (u, v) and {fnu}n∈N0

is a Cauchy sequence. (3.1) ensures that
fnu→ v as n→∞. By means of (3.2), we deduce that v = fv. That is, v is a
fixed point of the mapping f in Of (u, v). Suppose that f has a fixed point w in
Of (u, v) with w 6= v. In view of (3.3) and (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3, we find that

0 <

∫ ψ(d(w,v))

0

ϕ(t)dt =

∫ ψ(d(fpw,fqv))

0

ϕ(t)dt

≤ φ
(∫ ψ(δ(Of (w,v)))

0

ϕ(t)dt

)
= φ

(∫ ψ(d(w,v))

0

ϕ(t)dt

)
<

∫ ψ(d(w,v))

0

ϕ(t)dt,

which is a contradiction.
Notice that Of (fnu) = {v}∪Of (fnu) for each n ∈ N, limn→∞ δ(Of (fnu)) =

0 and limn→∞ fnu = v. It follows that for each ε > 0, there exists P ∈ N
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satisfying
d(fnu, v) < ε, ∀n > P

and
Of (fnu) ⊆ B(v, ε) = {x ∈ X : d(x, v) < ε}, ∀n > P.

That is, {Of (fnu)}n∈N converges to {v}. This completes the proof. �

Remark 3.1. The following example testifies that Theorem 3.1 is different from
Theorem 1.4.

Example 3.2. Let X = {0, 1}∪{ 1n : n ≥ 3}∪{n+1
n : n ∈ N}∪ [3,+∞) with the

usual metric d = | · |, p = q = 2, f : X → X and ϕ, φ, ψ : R+ → R+ be defined
by

fx =


x, ∀x ∈ {0, 1} ∪ [3,+∞),

n, x = 1
n , ∀n ≥ 3,

n+2
n+1 , x = n+1

n , ∀n ∈ N,

ϕ(t) =
1

1 + t
, φ(t) = t, ψ(t) = 2t, ∀t ∈ R+.

Clearly, (X, d) is a metric space, f is closed at 1 and (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3.
Put u = 2 and v = 1. Note that Of (2, 1) = {1} ∪ {n+1

n : n ∈ N}. It is easy to
verify that (3.1) holds. Let x, y ∈ Of (u, v) with x < y. In order to prove (3.3),
we have to consider the following possible cases:

Case 1. x = 1 and y = fn2 for some n ∈ N0. It follows that∫ ψ
(
d
(
f21,f2+n2

))
0

ϕ(t)dt =

∫ ψ
(
d
(
1,n+4

n+3

))
0

ϕ(t)dt =

∫ 2
n+3

0

1

1 + t
dt

= ln

(
1 +

2

n+ 3

)
< ln

(
1 +

2

n+ 1

)

= φ

(∫ ψ
(
d
(
1,n+2

n+1

))
0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (1,f
n2)))

0

ϕ(t)dt

)
;

Case 2. x = fm2 with y = fn2 for some m,n ∈ N0 with m > n. Note that∫ ψ
(
d
(
f2+m2,f2+n2

))
0

ϕ(t)dt =

∫ ψ
(
d
(

m+4
m+3 ,

n+4
n+3

))
0

ϕ(t)dt

= ln

(
1 +

2(m− n)

(m+ 3)(n+ 3)

)
< ln

(
1 +

2

n+ 1

)

= φ

(∫ ψ
(

1
n+1

)
0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (f
m2,fn2)))

0

ϕ(t)dt

)
.



448 Z. Liu, X. Liu, Y. Guo and C.Y. Jung

That is, (3.3) holds. Consequently, all the conditions of Theorem 3.1 are fulfilled.
It follows from Theorem 3.1 that f has a fixed point in Of (2, 1).

Unfortunately, Theorem 1.4 is useless in presenting the existence of fixed
points of the mapping f in X. Suppose that the conditions of Theorem 1.4
are satisfied. That is, there exist c ∈ (0, 1) and ϕ ∈ Φ1 satisfying (1.7). Set
(x0, y0) = (0, 1). By means of (1.7), c ∈ (0, 1) and ϕ ∈ Φ1, we conclude that

0 <

∫ 1

0

ϕ(t)dt =

∫ d(fx0,fy0)

0

ϕ(t)dt ≤ c
∫ d(x0,y0)

0

ϕ(t)dt

= c

∫ 1

0

ϕ(t)dt <

∫ 1

0

ϕ(t)dt,

which is absurd.

Following Theorem 3.1, we gain immediately that

Theorem 3.3. Let f be a self mapping of a complete bounded metric space
(X, d). Assume that there exist p, q ∈ N and (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 such that

f is closed in X ; (3.5)

∫ ψ(d(fpx,fqy))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
, ∀x, y ∈ X. (3.6)

Then
(d1) f has diminishing orbital diameters in X;
(d2) f has a unique fixed point v ∈ X and limn→∞ fnx = v, ∀x ∈ X;
(d3) {Of (fnx)}n∈N converges to {v}, ∀x ∈ X.

Remark 3.2. The following example reveals that the condition that f be closed
when p, q ≥ 2 is necessary in Theorems 3.1 and 3.3.

Example 3.4. Let p, q be in N and X = {0} ∪ { 1n : n ∈ N} with the usual
metric d = | · |. Define f : X → X and ϕ, φ, ψ : R+ → R+ by

fx =

{
1, x = 0,
1
4n , x = 1

n , ∀n ∈ N,

ϕ(t) =
1

1 + t
, φ(t) = t, ψ(t) = 2t, ∀t ∈ R+.

Clearly, (X, d) is a complete bounded metric space and (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3.
For any m,n ∈ N, we get that fm0 = 1

4m−1 and fm 1
n = 1

4mn . It follows that
δ(Of (x, y)) = 1 for at least one of x, y ∈ {0, 1} and δ(Of (x, y)) = max{x, y} if
x, y /∈ {0, 1}. Let x, y ∈ X. In order to verify (3.6), we consider the following
cases:
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Case 1. x = 0 and y = 1
n for some n ∈ N. It is easy to see that∫ ψ(d(fp0,fq 1

n ))

0

ϕ(t)dt

=

∫ ψ
(
d
(

1

4p−1 ,
1

4qn

))
0

ϕ(t)dt = ln

(
1 + 2

∣∣∣∣ 1

4p−1
− 1

4qn

∣∣∣∣)
≤ ln

(
1 + 2 max

{
1

4p−1
,

1

4q−1

})
= ln

(
1 +

2

4min{p−1,q−1}

)
≤ ln(1 + 2) = φ

(∫ ψ(1)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (0,
1
n )))

0

ϕ(t)dt

)
;

Case 2. x = 1
n for some n ∈ N and y = 0. It follows that∫ ψ(d(fp 1

n ,f
q0))

0

ϕ(t)dt

=

∫ ψ
(
d
(

1
4pn ,

1

4q−1

))
0

ϕ(t)dt = ln

(
1 + 2

∣∣∣∣ 1

4pn
− 1

4q−1

∣∣∣∣)
≤ ln

(
1 + 2 max

{
1

4p−1
,

1

4q−1

})
= ln

(
1 +

2

4min{p−1,q−1}

)
≤ ln(1 + 2) = φ

(∫ ψ(1)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (
1
n ,0)))

0

ϕ(t)dt

)
;

Case 3. x = y = 0. Note that∫ ψ(d(fp0,fq0))

0

ϕ(t)dt

=

∫ ψ
(
d
(

1

4p−1 ,
1

4q−1

))
0

ϕ(t)dt = ln

(
1 + 2

∣∣∣∣ 1

4p−1
− 1

4q−1

∣∣∣∣)
≤ ln

(
1 + 2 max

{
1

4p−1
,

1

4q−1

})
= ln

(
1 +

2

4min{p−1,q−1}

)
≤ ln(1 + 2) = φ

(∫ ψ(1)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (0,0)))

0

ϕ(t)dt

)
;
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Case 4. x = 1
m with y = 1

n for some m,n ∈ N. Observe that∫ ψ(d(fp 1
m ,fq 1

n ))

0

ϕ(t)dt

=

∫ ψ
(
d
(

1
4pm , 1

4qn

))
0

ϕ(t)dt = ln

(
1 + 2

∣∣∣∣ 1

4pm
− 1

4qn

∣∣∣∣)
≤ ln

(
1 +

2

4min{p,q} ·max

{
1

m
,

1

n

})
≤ ln

(
1 + 2 max

{
1

m
,

1

n

})
= φ

(∫ ψ(max{ 1
m , 1n})

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (
1
m , 1n )))

0

ϕ(t)dt

)
.

Therefore, all conditions of Theorems 3.1 and 3.3 are satisfied except the closed-
ness assumption. However, f has no fixed points.

Remark 3.3. Example 3.6 proves that completeness of X is necessary in The-
orem 3.3.

Example 3.5. Let X = (0, 1] with the usual metric d = | · |, p = q = 2,
ϕ, φ, ψ : R+ → R+ and f : X → X be defined by

fx =
x√
3
, ∀x ∈ (0, 1],

ϕ(t) = 2t, φ(t) =
t

9
, ψ(t) = 3t, ∀t ∈ R+.

Apparently, (X, d) is a bounded metric space, f is closed in X and (ϕ, φ, ψ) ∈
Φ1 × Φ2 × Φ3, but X is not complete. Note that p = q, which yields that (3.6)
is symmetric in x and y, and (3.6) holds for all x = y ∈ X. Let x, y ∈ X with
x < y. Notice that∫ ψ(d(fpx,fqy))

0

ϕ(t)dt =

(
3

∣∣∣∣x3 − y

3

∣∣∣∣)2

< y2

= φ

(∫ ψ(y)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
.

That is, (3.6) holds. Consequently, the conditions of Theorem 3.3 are satisfied
except for completeness assumption. However, f has no fixed points.

The following result presents that the closedness of f in Theorems 3.1 and
3.3 is unnecessary if p = 1 and q ∈ {1, 2}.

Theorem 3.6. Let f be a self mapping of a metric space (X, d), q ∈ {1, 2} and
(φ, ϕ, ψ) ∈ Φ2 × Φ4 × Φ5. Assume that there exist u, v ∈ X satisfying (3.1) and∫ ψ(d(fx,fqy))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
, ∀x, y ∈ Of (u, v), (3.7)
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then the conclusions of Theorem 3.1 hold.

Proof. Let sn = δ(Of (fnu, fnv)) and dn(x) = δ(Of (fnx)) for all (n, x) ∈ N0 ×
Of (u, v). Similar to the proof of Theorem 3.1, we obtain that

lim
n→∞

dn(x) = 0, ∀x ∈ Of (u, v) (3.8)

and

lim
n→∞

fnu = v. (3.9)

Since {sn}n∈N0 is decreasing and bounded below by 0, it follows that it converges
to some number ε0 ≥ 0. Suppose that ε0 > 0. By virtue of (3.7) and (φ, ϕ, ψ) ∈
Φ2 × Φ4 × Φ5, we gain that, ∀i, j, k, n ∈ N with i, j, k ≥ n

∫ ψ(d(fiu,fjv))

0

ϕ(t)dt

≤
∫ ψ(d(fiu,fk+qv)+d(fjv,fk+qv))

0

ϕ(t)dt

≤
∫ ψ(d(fiu,fk+qv))+ψ(d(fjv,fk+qv))

0

ϕ(t)dt

≤
∫ ψ(d(fiu,fk+qv))

0

ϕ(t)dt+

∫ ψ(d(fjv,fk+qv))

0

ϕ(t)dt

≤ φ
(∫ ψ(δ(Of (f

i−1u,fkv)))

0

ϕ(t)dt

)
+ φ

(∫ ψ(δ(Of (f
j−1v,fkv)))

0

ϕ(t)dt

)
≤ φ

(∫ ψ(δ(Of (f
n−1u,fn−1v)))

0

ϕ(t)dt

)
+ φ

(∫ ψ(δ(Of (f
n−1v)))

0

ϕ(t)dt

)
= φ

(∫ ψ(sn−1)

0

ϕ(t)dt

)
+ φ

(∫ ψ(dn−1(v))

0

ϕ(t)dt

)

(3.10)

and, ∀y ∈ {u, v}, i, j, n ∈ N with j, i ≥ n ≥ 2

∫ ψ(d(fiy,fjy))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (f

i−1y,fj−qy)))

0

ϕ(t)dt

)
≤ φ

(∫ ψ(δ(Of (f
n−1y,fn−2y)))

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (f
n−2y)))

0

ϕ(t)dt

)
= φ

(∫ ψ(dn−2(y))

0

ϕ(t)dt

)
,
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which give that∫ ψ(sn)

0

ϕ(t)dt =

∫ ψ(max{dn(u),dn(v),sup{d(fiu,fjv):∀i,j∈N with i,j≥n}})

0

ϕ(t)dt

= max

{∫ ψ(dn(u))

0

ϕ(t)dt,

∫ ψ(dn(v))

0

ϕ(t)dt,

sup

{∫ ψ(d(fiu,fjv))

0

ϕ(t)dt : ∀i, j ∈ N with i, j ≥ n
}}

≤ max

{
φ

(∫ ψ(dn−2(u))

0

ϕ(t)dt

)
, φ

(∫ ψ(dn−2(v))

0

ϕ(t)dt

)
,

φ

(∫ ψ(sn−1)

0

ϕ(t)dt

)
+ φ

(∫ ψ(dn−1(v))

0

ϕ(t)dt

)}
, ∀n ≥ 2,

which together with (3.8), limn→∞ sn = ε0, Lemmas 2.3 and 2.4 and (φ, ϕ, ψ) ∈
Φ2 × Φ4 × Φ5 shows that

0 <

∫ ψ(ε0)

0

ϕ(t)dt = lim sup
n→∞

∫ ψ(sn)

0

ϕ(t)dt

≤ lim sup
n→∞

max

{
φ

(∫ ψ(dn−2(u))

0

ϕ(t)dt

)
, φ

(∫ ψ(dn−2(v))

0

ϕ(t)dt

)
,

φ

(∫ ψ(sn−1)

0

ϕ(t)dt

)
+ φ

(∫ ψ(dn−1(v))

0

ϕ(t)dt

)}
≤ max

{
lim sup
n→∞

φ

(∫ ψ(dn−2(u))

0

ϕ(t)dt)

)
, lim sup
n→∞

φ

(∫ ψ(dn−2(v))

0

ϕ(t)dt

)
,

lim sup
n→∞

φ

(∫ ψ(sn−1)

0

ϕ(t)dt

)
+ lim sup

n→∞
φ

(∫ ψ(dn−1(v))

0

ϕ(t)dt

)}
≤ max

{
0, 0, φ

(∫ ψ(ε0)

0

ϕ(t)dt

)}
= φ

(∫ ψ(ε0)

0

ϕ(t)dt

)
<

∫ ψ(ε0)

0

ϕ(t)dt,

which is impossible. That is, limn→∞ sn = 0.
It follows from (3.9) that

0 ≤ d(v, fnv) ≤ δ(Of (fnu, fnv)) = δ(Of (fnu, fnv)) = sn → 0 as n→∞,
which implies that

lim
n→∞

fnv = v. (3.11)

Suppose that v 6= fv. It follows that d0(v) = δ(Of (v)) > 0. Thus (3.11) means
that there exists n0 ∈ N satisfying

d(fnv, v) ≤ 1

2
δ(Of (v)) =

1

2
d0(v), ∀n ≥ n0. (3.12)
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By virtue of (3.7) and (φ, ϕ, ψ) ∈ Φ2 × Φ4 × Φ5, we have∫ ψ(d(fnv,fjv))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (f

n−1v,fj−qv)))

0

ϕ(t)dt

)
≤ φ

(∫ ψ(δ(Of (v)))

0

ϕ(t)dt

)
= φ

(∫ ψ(d0(v))

0

ϕ(t)dt

)
, ∀n, j ∈ N with j > n,

which implies that∫ ψ(d1(v))

0

ϕ(t)dt =

∫ ψ(Of (fv))

0

ϕ(t)dt ≤ φ
(∫ ψ(d0(v))

0

ϕ(t)dt

)
<

∫ ψ(d0(v))

0

ϕ(t)dt,

(3.13)

which together with (ϕ,ψ) ∈ Φ4 × Φ5 yields that

d1(v) < d0(v). (3.14)

Using (3.12) and (3.14), we get that

d0(v) = max{sup{d(fnv, v) : n ∈ N}, d1(v)}
= sup{d(fnv, v) : n ∈ N}
= max{d(fnv, v) : 1 ≤ n < n0},

which means that there exists r ∈ N with 1 ≤ r < n0 satisfying

d0(v) = max{d(fnv, v) : n < n0} = d(frv, v). (3.15)

On account of (3.7), (3.10), (3.14), (φ, ϕ, ψ) ∈ Φ2×Φ4×Φ5 and Lemma 2.3, we
find that

0 <

∫ ψ(d0(v))

0

ϕ(t)dt =

∫ ψ(d(frv,v))

0

ϕ(t)dt

= lim sup
n→∞

∫ ψ(d(frv,fnv))

0

ϕ(t)dt

≤ lim sup
n→∞

φ

(∫ ψ(δ(Of (f
r−1v,fn−qv)))

0

ϕ(t)dt

)
≤ φ

(∫ ψ(d0(v))

0

ϕ(t)dt

)
<

∫ ψ(d0(v))

0

ϕ(t)dt,

which is absurd. That is, v = fv.
The rest of the proof is identical with the proof of Theorem 3.1. This com-

pletes the proof. �

Following Theorem 3.6, we have
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Theorem 3.7. Let f be a self mapping of a complete bounded metric space
(X, d). Assume that there exist q ∈ {1, 2} and (φ, ϕ, ψ) ∈ Φ2×Φ4×Φ5 satisfying∫ ψ(d(fx,fqy))

0

ϕ(t)dt ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
, ∀x, y ∈ X, (3.16)

then the conclusions of Theorem 3.3 hold.

Remark 3.4. Theorem 3.6 extends Theorem 5 in [12]. The following example
shows that Theorem 3.7 differs from Theorem 1.4.

Example 3.8. Let X = [0, 8] with the usual metric d = | · |, φ, ϕ, ψ : R+ → R+

and f : X → X satisfy that

fx =

{
1, x = 4,

2, ∀x ∈ X\{4},

ϕ(t) =
1

1 + t
, φ(t) =

t

2
, ψ(t) =

t

3
, ∀t ∈ R+.

Evidently, (X, d) is a complete bounded metric space and (φ, ϕ, ψ) ∈ Φ2 ×Φ4 ×
Φ5. Let q = 1 and x, y ∈ X. In other to prove (3.16), we have to consider the
following possible cases:

Case 1. x = y ∈ X\{4}. It follows that∫ ψ(d(fx,fy))

0

ϕ(t)dt = 0 ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;

Case 2. x = y = 4. Notice that∫ ψ(d(fx,fy))

0

ϕ(t)dt = 0 ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;

Case 3. x, y ∈ X with x 6= y. Now we consider the following subcases:
Subcase 1. x ∈ [0, 1] and y = 4. Note that∫ ψ(d(fx,fy))

0

ϕ(t)dt = ln

(
1 +

1

3

)
<

1

2
ln 2

≤ 1

2
ln

(
1 +

4− x
3

)
= φ

(∫ ψ(4−x)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;
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Subcase 2. x ∈ (1, 4) and y = 4. It is easy to conclude that∫ ψ(d(fx,fy))

0

ϕ(t)dt = ln

(
1 +

1

3

)
<

1

2
ln

(
1 +

3

3

)
= φ

(∫ ψ(3)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;

Subcase 3. x ∈ (4, 8] and y = 4. It is evident to know that∫ ψ(d(fx,fy))

0

ϕ(t)dt = ln

(
1 +

1

3

)
<

1

2
ln

(
1 +

x− 1

3

)
= φ

(∫ ψ(x−1)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;

Subcase 4. x = 4 and y ∈ [0, 1]. It follows that∫ ψ(d(fx,fy))

0

ϕ(t)dt = ln

(
1 +

1

3

)
<

1

2
ln

(
1 +

4− y
3

)
= φ

(∫ ψ(4−y)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;

Subcase 5. x = 4 and y ∈ (1, 4). Notice that∫ ψ(d(fx,fy))

0

ϕ(t)dt = ln

(
1 +

1

3

)
<

1

2
ln

(
1 +

3

3

)
= φ

(∫ ψ(3)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;

Subcase 6. x = 4 and y ∈ (4, 8]. It is clear that∫ ψ(d(fx,fy))

0

ϕ(t)dt = ln

(
1 +

1

3

)
<

1

2
ln

(
1 +

y − 1

3

)
= φ

(∫ ψ(y−1)

0

ϕ(t)dt

)
= φ

(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
;
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Subcase 7. x, y ∈ X\{4} with x 6= y. It follows that∫ ψ(d(fx,fy))

0

ϕ(t)dt = 0 ≤ φ
(∫ ψ(δ(Of (x,y)))

0

ϕ(t)dt

)
.

That is, (3.16) holds. Therefore, the conditions of Theorem 3.7 are satisfied. It
follows from Theorem 3.7 that f has a unique fixed point 2 ∈ X.

However, Theorem 1.4 is useless in proposing the existence of fixed points of
the mapping f in X. Suppose that the conditions of Theorem 1.4 are satisfied.
That is, there exist c ∈ (0, 1) and ϕ ∈ Φ1 satisfying (1.7). Take (x1, y1) = (4, 5).
In view of (1.7), c ∈ (0, 1) and ϕ ∈ Φ1, we infer that

0 <

∫ 1

0

ϕ(t)dt =

∫ d(fx1,fy1)

0

ϕ(t)dt

≤ c
∫ d(x1,y1)

0

ϕ(t)dt = c

∫ 1

0

ϕ(t)dt <

∫ 1

0

ϕ(t)dt,

which is impossible.

4. Conclusions

Combining the ideas of Belluce and Kirk [3] and Branciari [4], we suggest a
few contractive mappings of integral type and prove, under certain conditions,
the existence and uniqueness of fixed point and properties of diminishing orbital
diameters for the contractive mappings. Our results have potential applications
in nonlinear integral and differential equations and functional equations.
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