CHARACTERIZATIONS OF THE UNIFORM DISTRIBUTIONS BASED ON UPPER RECORD VALUES

MIN-YOUNG LEE

Abstract

We obtain two characterizations of uniform distribution based on ratios of upper record values by the properties of independence and identical distribution.

AMS Mathematics Subject Classification : 60E10, 62 E10. Key words and phrases : Independent and identically distributed, identical distribution, uniform distribution, uniqueness theorem, upper record values.

1. Introduction

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent and identically distributed (i.i.d.) random variables with cumulative distribution function(cdf) $F(x)$ which is absolutely continuous and probability density function(pdf) $f(x)$. Suppose that $Y_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ for $n \geq 1$. We say X_{j} is an upper record value of this sequence, if $Y_{j}>Y_{j-1}$ for $j>1$. The indices at which the upper record values occur are given by the record times $\{U(n), n \geq 1\}$, where $U(n)=\min \{j \mid$ $\left.j>U(n-1), X_{j}>X_{U(n-1)}, n \geq 2\right\}$ with $U(1)=1$. We assume that all upper record values $X_{U(i)}$ for $i \geq 1$ occur at a sequence $\left\{X_{n}, n \geq 1\right\}$ of i.i.d. random variables.

We say the random variable F follows a uniform distribution over the interval [a, b] being denoted by $F \sim U(a, b)$, if the corresponding probability cumulative distribution function(cdf) $F(x)$ of X is of the form

$$
F(x)= \begin{cases}0, & x<a \\ \frac{x-a}{b-a}, & a \leq x<b \\ 1, & x \geq b\end{cases}
$$

The distribution of record values is given in terms of hazard function and hazard rate (see [2]). The function $R(x)$ defined as $R(x)=-\ln (\bar{F}(x))$ for

[^0]$\bar{F}(x)=1-F(x)$ is called hazard function for the upper record values. The function $r(x)=\frac{d R(x)}{d x}=\frac{f(x)}{F(x)}$ is the hazard rate for the upper records.

We say the random variable X belongs to the class C_{1}, if either $r(1-v) \leq$ $r(1-v w) w$ or $r(1-v) \geq r(1-v w) w$ for all $0<v<\infty, 0<w<\infty$. Several distributions including uniform, exponential and Pareto distributions are members of the class C_{1}.

Many characterization results involving spacings of record statistics can be found in the literature. In [3], Arslan et al. characterized that if $X_{U(m)}-$ $X_{U(m-1)}$ and $X_{L(m)}, 2 \leq m<n$, are identically distributed, then $F \sim U(0, \beta)$ where the random variables are symmetric about $\beta / 2$. In [4], Arslan et al. proved that X_{i} characterizes the uniform distribution if and only if $X_{L(n)}$ and $X_{L(n-1)} \cdot V_{1}, n \geq 2$, are identically distributed where V_{1} is independent of random variables X_{i} 's. Recently, in [5], Nadarajah et al. derived that X is distributed uniformly over the interval $(0,1)$ if and only if $W=-\ln \left(X_{L(n)} / X_{L(m)}\right)$ has the Gamma distribution with shape parameter $n-m$.

The current investigation was induced by characterizations of uniform distribution by [3] and [4]. Namely, if we write $U=\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)$ and $V=1-X_{U(n-1)}$, one can ask whether the independence of U and V characterizes uniform distribution. Also we can ask whether the identity distribution of $\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)$ and $\left(1-X_{U(n+1)}\right) /\left(1-X_{U(n)}\right)$ characterizes uniformality.

In this paper, we investigate characterizations of the uniform distribution based on upper record values by the independence property and the assumption of identical distribution.

2. Main Results

Theorem 2.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables that have absolutely continuous (with respect to Lebesgue measure) cdf $F(x)$ with $F(0)=0$ and the corresponding pdf $f(x)$ with $f(0)=1$. Then X_{n} is distributed uniformly over the interval $(0,1)$ if and only if $\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)$ and $1-X_{U(n-1)}$ are independent for $n \geq 2$.

Proof. If $F(x)=x$ for all $0 \leq x<1$, then the joint pdf $f_{n-1, n}(x, y)$ of $X_{U(n-1)}$ and $X_{U(n)}$ is given by (see [2])

$$
f_{n-1, n}(x, y)=\frac{[-\ln (1-x)]^{n-2}}{\Gamma(n-1)} \frac{1}{1-x}
$$

for all $0 \leq x<y \leq 1$ and $n \geq 2$.
Consider the function $W=\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)$ and $V=1-X_{U(n-1)}$. It follows that $x_{U(n-1)}=1-v, x_{U(n)}=1-v w$. The Jacobian of the transformation is $J=v$. Thus we can obtain the joint pdf $f_{V, W}(v, w)$ of V and W as

$$
\begin{equation*}
f_{V, W}(v, w)=[-\ln (v)]^{n-2} / \Gamma(n-1) \tag{1}
\end{equation*}
$$

for all $v, w, 0<v \leq 1,0 \leq w<1$.

The marginal pdf $f_{W}(w)$ of W is found by

$$
\begin{equation*}
f_{W}(w)=\int_{0}^{1} \frac{[-\ln (v)]^{n-2}}{\Gamma(n-1)} d v=1 \tag{2}
\end{equation*}
$$

for all $0 \leq w<1$. Also, the pdf $f_{V}(v)$ of V is given by

$$
\begin{equation*}
f_{V}(v)=[-\ln (v)]^{n-2} / \Gamma(n-1) \tag{3}
\end{equation*}
$$

for all $0<v \leq 1$.
From (1), (2) and (3), we obtain $f_{V}(v) f_{W}(w)=f_{V, W}(v, w)$. Hence V and W are independent.

Now we prove the sufficient condition. The joint pdf $f_{n-1, n}(x, y)$ of $X_{U(n-1)}$ and $X_{U(n)}$ is given by (see [2])

$$
f_{n-1, n}(x, y)=[R(x)]^{n-2} r(x) f(y) / \Gamma(n-1)
$$

for all $0 \leq x<y \leq 1$ and $n \geq 2$, where $R(x)=-\ln (\bar{F}(x))$ and $r(x)=\frac{d}{d x} R(x)=$ $\frac{f(x)}{F(x)}$.

Let us use the transformation $W=\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)$ and $V=$ $1-X_{U(n-1)}$. The Jacobian of the transformation is $J=v$. Thus we obtain the joint pdf $f_{V, W}(v, w)$ of V and W as

$$
\begin{equation*}
f_{V, W}(v, w)=[R(1-v)]^{n-2} r(1-v) f(1-v w) v / \Gamma(n-1) \tag{4}
\end{equation*}
$$

for all $v, w, 0<v \leq 1,0 \leq w<1$.
The pdf $f_{V}(v)$ of V is given by

$$
\begin{equation*}
f_{V}(v)=[R(1-v)]^{n-2} f(1-v) / \Gamma(n-1) \tag{5}
\end{equation*}
$$

for all $v, 0<v \leq 1$.
From (4) and (5), we get the pdf $f_{W}(w)$ of W

$$
f_{W}(w)=f(1-v w) v / \bar{F}(1-v)
$$

for all $w, 0 \leq w<1$.
Since V and W are independent, the pdf $f_{W}(w)$ of W is a function of w only. Thus we must have $\frac{\partial}{\partial v}\left(f_{W}(w)\right)=0$. That is,

$$
\begin{equation*}
-f^{\prime}(1-v w) v w \bar{F}(1-v)+f(1-v w) \bar{F}(1-v)-f(1-v) f(1-v w) v=0 \tag{6}
\end{equation*}
$$

for all $v, w, 0<v \leq 1,0 \leq w<1$.
Therefore, by the existence and uniqueness theorem, there exists a unique solution of the differential equation (6) that satisfies the initial conditions $F(0)=$ 0 and $f(0)=1$. Thus we get $F(x)=x$ for $0 \leq x<1$, from (6). This completes the proof.

Theorem 2.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables that have absolutely continuous (with respect to Lebesgue measure) cdf $F(x)$ with $F(0)=0$ and $F(1)=1$ and the corresponding pdf $f(x)$. Assume that F belongs to the class C_{1}. Then X_{n} is distributed uniformly over the interval $(0,1)$ if and
only if the probability distributions of $W_{n+1, n}=\left(1-X_{U(n+1)}\right) /\left(1-X_{U(n)}\right)$ and $W_{n, n-1}=\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)$ are identically distributed for $n \geq 2$.

Proof. If X_{n} is distributed uniformly over the interval $(0,1)$, then it can be easily seen that

$$
W_{n+1, n}=\left(1-X_{U(n+1)}\right) /\left(1-X_{U(n)}\right)
$$

and

$$
W_{n, n-1}=\left(1-X_{U(n)}\right) /\left(1-X_{U(n-1)}\right)
$$

are identically distributed. We have to prove the converse.
From (4), the pdf g_{n} of $W_{n+1, n}$ can be written as

$$
g_{n}(w)= \begin{cases}\int_{0}^{1} \frac{[R(1-v)]^{n-1}}{\Gamma(n)} r(1-v) f(1-v w) v d v, & 0 \leq w<1 \\ 0, & \text { otherwise }\end{cases}
$$

where $R(x)=-\ln (\bar{F}(x))$ and $r(x)=\frac{d}{d x}(R(x))=\frac{f(x)}{\bar{F}(x)}$.
Thus it follows that

$$
P\left(W_{n+1, n}<w\right)=\int_{0}^{1} \frac{[R(1-v)]^{n-1}}{\Gamma(n)} r(1-v) \bar{F}(1-v w) d v
$$

for all $0 \leq w<1$.
Since $W_{n+1, n}$ and $W_{n, n-1}$ are identically distributed, we get

$$
\begin{align*}
& \int_{0}^{1}[R(1-v)]^{n-1} r(1-v) \bar{F}(1-v w) d v \tag{7}\\
& =(n-1) \int_{0}^{1}[R(1-v)]^{n-2} r(1-v) \bar{F}(1-v w) d v
\end{align*}
$$

for all $0 \leq w<1$.
Substituting the identity
$(n-1) \int_{0}^{1}[R(1-v)]^{n-2} r(1-v) \bar{F}(1-v w) d v=\int_{0}^{1}[R(1-v)]^{n-1} f(1-v w) w d v$ in (7), we get on simplification

$$
\begin{equation*}
\int_{0}^{1}[R(1-v)]^{n-1} \bar{F}(1-v w)[r(1-v)-r(1-v w) w] d v=0 \tag{8}
\end{equation*}
$$

for all $0 \leq w<1$.
Thus if $F \in C_{1}$, then (8) is true if for almost all v and any fixed $w, 0 \leq w<1$,

$$
\begin{equation*}
r(1-v)=r(1-v w) w \tag{9}
\end{equation*}
$$

Integrating (9) with respect to v from v_{1} to 1 and simplifying, we get

$$
\begin{equation*}
\bar{F}\left(1-v_{1}\right) \bar{F}(1-w)=\bar{F}\left(1-v_{1} w\right) \tag{10}
\end{equation*}
$$

for any fixed v_{1} with $0 \leq v_{1} \leq 1$.

By the theory of functional equations (see [1]), the only continuous solution of (10) with the boundary conditions $\bar{F}(0)=1$ and $\bar{F}(1)=0$ is

$$
\bar{F}(x)=1-x
$$

for all $x, 0 \leq x<1$. This completes the proof.

References

1. J. Aczel, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
2. M. Ahsanullah, Record Values: Theory and Application, University Press of America, Inc., Lanham, Maryland, USA, 2005
3. G. Arslan, M. Ahsanullah and I.G. Bairamov, On characteristic properties of the uniform distribution. Sankhy $\bar{a} 67$ (2005), 715-721.
4. G. Arslan, M. Ahsanullah and I.G. Bairamov, On some characteristic properties of the uniform distribution, In: Advances on Model, Characterizations and Applications, N. Balakrishnan, I.G. Bairamov and O.L. Gebizlioglu (eds), Champan and Hall/CRC, Boca Raton, Florida, 2005, pp. 153-160.
5. S. Nadarajah, M. Teimouri and S.H. Shih, Characterizations of the Weibull and uniform distributions using record values, Braz. J. Probab. Stat. 28 (2014) 209-222.

Min-Young Lee received M.S. and Ph.D. from Temple University. Since 1991 he has served as a professor at Dankook University. His research interests include characterizations of distribution, order and record statistics.
Department of Mathematics, Dankook University, Cheonan 330-714, Republic of Korea.
e-mail: leemy@dankook.ac.kr

[^0]: Received June 13, 2019. Revised August 4, 2019. Accepted August 8, 2019.
 (c) 2019 KSCAM .

