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Abstract. We obtain two characterizations of uniform distribution based

on ratios of upper record values by the properties of independence and

identical distribution.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed
(i.i.d.) random variables with cumulative distribution function(cdf) F (x) which
is absolutely continuous and probability density function(pdf) f(x). Suppose
that Yn = max{X1, X2, . . . , Xn} for n ≥ 1. We say Xj is an upper record value
of this sequence, if Yj > Yj−1 for j > 1. The indices at which the upper record
values occur are given by the record times {U(n), n ≥ 1}, where U(n) = min{j |
j > U(n − 1), Xj > XU(n−1), n ≥ 2} with U(1) = 1. We assume that all upper
record values XU(i) for i ≥ 1 occur at a sequence {Xn, n ≥ 1} of i.i.d. random
variables.

We say the random variable F follows a uniform distribution over the interval
[a, b] being denoted by F ∼ U(a, b), if the corresponding probability cumulative
distribution function(cdf) F (x) of X is of the form

F (x) =


0, x < a,
x−a
b−a , a ≤ x < b,

1, x ≥ b.
The distribution of record values is given in terms of hazard function and

hazard rate (see [2]). The function R(x) defined as R(x) = − ln(F̄ (x)) for
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F̄ (x) = 1 − F (x) is called hazard function for the upper record values. The

function r(x) = dR(x)
dx = f(x)

F̄ (x)
is the hazard rate for the upper records.

We say the random variable X belongs to the class C1, if either r(1 − v) ≤
r(1−vw)w or r(1−v) ≥ r(1−vw)w for all 0 < v <∞, 0 < w <∞. Several dis-
tributions including uniform, exponential and Pareto distributions are members
of the class C1.

Many characterization results involving spacings of record statistics can be
found in the literature. In [3], Arslan et al. characterized that if XU(m) −
XU(m−1) and XL(m), 2 ≤ m < n, are identically distributed, then F ∼ U(0, β)
where the random variables are symmetric about β/2. In [4], Arslan et al.
proved that Xi characterizes the uniform distribution if and only if XL(n) and
XL(n−1)·V1, n ≥ 2, are identically distributed where V1 is independent of random
variables Xi’s. Recently, in [5], Nadarajah et al. derived that X is distributed
uniformly over the interval (0, 1) if and only if W = − ln(XL(n)/XL(m)) has the
Gamma distribution with shape parameter n−m.

The current investigation was induced by characterizations of uniform distri-
bution by [3] and [4]. Namely, if we write U = (1 −XU(n))/(1 −XU(n−1)) and
V = 1 − XU(n−1), one can ask whether the independence of U and V charac-
terizes uniform distribution. Also we can ask whether the identity distribution
of (1−XU(n))/(1−XU(n−1)) and (1−XU(n+1))/(1−XU(n)) characterizes uni-
formality.

In this paper, we investigate characterizations of the uniform distribution
based on upper record values by the independence property and the assumption
of identical distribution.

2. Main Results

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables that
have absolutely continuous (with respect to Lebesgue measure) cdf F (x) with
F (0) = 0 and the corresponding pdf f(x) with f(0) = 1. Then Xn is distributed
uniformly over the interval (0, 1) if and only if (1 −XU(n))/(1 −XU(n−1)) and
1−XU(n−1) are independent for n ≥ 2.

Proof. If F (x) = x for all 0 ≤ x < 1, then the joint pdf fn−1,n(x, y) of XU(n−1)

and XU(n) is given by (see [2])

fn−1,n(x, y) =
[− ln(1− x)]n−2

Γ(n− 1)

1

1− x
,

for all 0 ≤ x < y ≤ 1 and n ≥ 2.
Consider the function W = (1−XU(n))/(1−XU(n−1)) and V = 1−XU(n−1). It

follows that xU(n−1) = 1−v, xU(n) = 1−vw. The Jacobian of the transformation
is J = v. Thus we can obtain the joint pdf fV,W (v, w) of V and W as

fV,W (v, w) = [− ln(v)]n−2/Γ(n− 1) (1)

for all v, w, 0 < v ≤ 1, 0 ≤ w < 1.
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The marginal pdf fW (w) of W is found by

fW (w) =

∫ 1

0

[− ln(v)]n−2

Γ(n− 1)
dv = 1 (2)

for all 0 ≤ w < 1. Also, the pdf fV (v) of V is given by

fV (v) = [− ln(v)]n−2/Γ(n− 1) (3)

for all 0 < v ≤ 1.
From (1), (2) and (3), we obtain fV (v)fW (w) = fV,W (v, w). Hence V and W

are independent.
Now we prove the sufficient condition. The joint pdf fn−1,n(x, y) of XU(n−1)

and XU(n) is given by (see [2])

fn−1,n(x, y) = [R(x)]n−2r(x)f(y)/Γ(n− 1)

for all 0 ≤ x < y ≤ 1 and n ≥ 2, where R(x) = − ln(F̄ (x)) and r(x) = d
dxR(x) =

f(x)
F̄ (x)

.

Let us use the transformation W = (1 − XU(n))/(1 − XU(n−1)) and V =
1−XU(n−1). The Jacobian of the transformation is J = v. Thus we obtain the
joint pdf fV,W (v, w) of V and W as

fV,W (v, w) = [R(1− v)]n−2r(1− v)f(1− vw)v/Γ(n− 1) (4)

for all v, w, 0 < v ≤ 1, 0 ≤ w < 1.
The pdf fV (v) of V is given by

fV (v) = [R(1− v)]n−2f(1− v)/Γ(n− 1) (5)

for all v, 0 < v ≤ 1.
From (4) and (5), we get the pdf fW (w) of W

fW (w) = f(1− vw)v/F̄ (1− v)

for all w, 0 ≤ w < 1.
Since V and W are independent, the pdf fW (w) of W is a function of w only.

Thus we must have ∂
∂v (fW (w)) = 0. That is,

−f ′(1− vw)vwF̄ (1− v) + f(1− vw)F̄ (1− v)− f(1− v)f(1− vw)v = 0 (6)

for all v, w, 0 < v ≤ 1, 0 ≤ w < 1.
Therefore, by the existence and uniqueness theorem, there exists a unique

solution of the differential equation (6) that satisfies the initial conditions F (0) =
0 and f(0) = 1. Thus we get F (x) = x for 0 ≤ x < 1, from (6). This completes
the proof. �

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables that
have absolutely continuous (with respect to Lebesgue measure) cdf F (x) with
F (0) = 0 and F (1) = 1 and the corresponding pdf f(x). Assume that F belongs
to the class C1. Then Xn is distributed uniformly over the interval (0, 1) if and
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only if the probability distributions of Wn+1,n = (1−XU(n+1))/(1−XU(n)) and
Wn,n−1 = (1−XU(n))/(1−XU(n−1)) are identically distributed for n ≥ 2.

Proof. If Xn is distributed uniformly over the interval (0, 1), then it can be easily
seen that

Wn+1,n = (1−XU(n+1))/(1−XU(n))

and

Wn,n−1 = (1−XU(n))/(1−XU(n−1))

are identically distributed. We have to prove the converse.
From (4), the pdf gn of Wn+1,n can be written as

gn(w) =

{∫ 1

0
[R(1−v)]n−1

Γ(n) r(1− v)f(1− vw)vdv, 0 ≤ w < 1

0, otherwise

where R(x) = − ln(F̄ (x)) and r(x) = d
dx (R(x)) = f(x)

F̄ (x)
.

Thus it follows that

P (Wn+1,n < w) =

∫ 1

0

[R(1− v)]n−1

Γ(n)
r(1− v)F̄ (1− vw)dv

for all 0 ≤ w < 1.
Since Wn+1,n and Wn,n−1 are identically distributed, we get∫ 1

0

[R(1− v)]n−1r(1− v)F̄ (1− vw)dv

= (n− 1)

∫ 1

0

[R(1− v)]n−2r(1− v)F̄ (1− vw)dv

(7)

for all 0 ≤ w < 1.
Substituting the identity

(n− 1)

∫ 1

0

[R(1− v)]n−2r(1− v)F̄ (1− vw)dv =

∫ 1

0

[R(1− v)]n−1f(1− vw)wdv

in (7), we get on simplification∫ 1

0

[R(1− v)]n−1F̄ (1− vw)[r(1− v)− r(1− vw)w]dv = 0 (8)

for all 0 ≤ w < 1.
Thus if F ∈ C1, then (8) is true if for almost all v and any fixed w, 0 ≤ w < 1,

r(1− v) = r(1− vw)w. (9)

Integrating (9) with respect to v from v1 to 1 and simplifying, we get

F̄ (1− v1)F̄ (1− w) = F̄ (1− v1w) (10)

for any fixed v1 with 0 ≤ v1 ≤ 1.
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By the theory of functional equations (see [1]), the only continuous solution
of (10) with the boundary conditions F̄ (0) = 1 and F̄ (1) = 0 is

F̄ (x) = 1− x
for all x, 0 ≤ x < 1. This completes the proof. �
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