DOI QR코드

DOI QR Code

Sensitivity Analysis of Artificial Recharge in Consideration of Hydrogeologic Characteristics of Facility Agricultural Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well

국내 시설농업단지의 수리지질 특성을 고려한 인공함양 민감도 분석 : 수리전도도 및 주입정과 양수정의 이격거리

  • Choi, Jung Chan (Department of Earth & Environmental Sciences, Pukyong National University) ;
  • Kang, Dong-hwan (Environmental Research Institute, Pukyong National University)
  • Received : 2019.07.01
  • Accepted : 2019.08.31
  • Published : 2019.09.30

Abstract

In this study, the sensitivity analysis of hydraulic conductivity and separation distance (distance between injection well and pumping well) was analyzed by establishing a conceptual model considering the hydrogeologic characteristics of facility agricultural complex in Korea. In the conceptual model, natural characteristics (topography and geology, precipitation, hydraulic conductivity, etc.) and artificial characteristics (separation distance from injection well to pumping well, injection rate and pumping rate, etc.) is entered, and sensitivity analysis was performed 12 scenarios using a combination of hydraulic conductivity ($10^{-1}cm/sec$, $10^{-2}cm/sec$, $10^{-3}cm/sec$, $10^{-4}cm/sec$) and separation distance (10 m, 50 m, 100 m). Groundwater drawdown at the monitoring well was increased as the hydraulic conductivity decreased and the separation distance increased. From the regression analysis of groundwater drawdown as a hydraulic conductivity at the same separation distance, it was found that the groundwater level fluctuation of artificial recharge aquifer was dominantly influenced by hydraulic conductivity. In the condition that the hydraulic conductivity of artificial recharge aquifer was $10^{-2}cm/sec$ or more, the radius of influence of groundwater level was within 20 m, but In the condition that the hydraulic conductivity is $10^{-3}cm/sec$ or less, it is confirmed that the radius of influence of groundwater increases sharply as the separation distance increases.

Keywords

References

  1. Abkenar, F. Z., Rasoulzadeh, A., Asghari, A., 2019, Performance evaluation of different soil water retention functions for modeling of water flow under transient condition, DOI: 10.1590/1678-4499.2017406, 1-12.
  2. Alaghmand, S., Beecham, S., Woods, J. A., Holland, K. L., Jolly, I. D., Hassanli, A., Nouri, H., 2015, Injection of fresh river water into a saline floodplain aquifer as a salt interception measure in a semi-arid environment, Ecol. Eng., 75, 308-322. https://doi.org/10.1016/j.ecoleng.2014.11.014
  3. Azaroual, M., Pettenati, M., Ollivier, P., Besnard, K., Casanova, J., Rampnoux, N., 2013, Procedia Earth and Planetary Sci., 7, 40-43. https://doi.org/10.1016/j.proeps.2013.03.169
  4. Chang, S. W., Chung, I. M., 2014, Analysis of ground -water variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site, J. Engineering Geol., 24(2), 217-225. https://doi.org/10.9720/kseg.2014.2.217
  5. Chang, S. W., Chung, I. M., 2015, An Analysis of groundwater budget in a water curtain cultivation site, J. Korean Soc. of Civil Engineers, 35(6), 1259-1267. https://doi.org/10.12652/Ksce.2015.35.6.1259
  6. Chang, S. W., Chung, I. M., Kim, Y. C., Moon, S. H., 2016, Long-term groundwater budget analysis based on integrated hydrological model for water curtain cultivation site: Case study of Cheongweon, Korea, J. Geol. Soc. Korea, 52(3), 201-210. https://doi.org/10.14770/jgsk.2016.52.3.201
  7. Chung, I. M., Chang, S. W., 2016, Analysis and evaluation of hydrological components in a water curtain cultivation site, J. Korea Water Resour. Assoc., 49(9), 731-740. https://doi.org/10.3741/JKWRA.2016.49.9.731
  8. Dillon, P., 2005, Future management of aquifer recharge, Hydrogeol. J., 13, 313-316. https://doi.org/10.1007/s10040-004-0413-6
  9. Edwards, E. C., Harter, T., Fogg, G. E., Washburn, B., Hamad, H., 2016, Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential, J. Hydrology, 539, 539-553. https://doi.org/10.1016/j.jhydrol.2016.05.059
  10. Frei, S., Lischeid, G., Fleckenstein, J. H., 2010, Effects of micro-topography on surface-subsurface exchange and runoff generation in a virtual riparian wetland A modeling study, Advances in Wat. Resources, 33, 1388-1401. https://doi.org/10.1016/j.advwatres.2010.07.006
  11. Freiburg, I. Br., 2015, Characterization of spatial and temporal artificial recharge: Field testing and numerical modeling, Master's Thesis, Albert Ludwigs University, 57.
  12. Frey, S. K., Hwang, H. T., Park, Y. J., Hussain, S. I., Gottschall, N., Edwards, M., Lapen, D. R., 2016, J. Hydrology, 535, 392-406. https://doi.org/10.1016/j.jhydrol.2016.01.073
  13. Fu, G., Crosbie, R. S., Barron, O. B., Charles, S. P., Dawes, W., Shi, X., Niel, T. V., Li, C., 2019, Attributing variations of temporal and spatial groundwater recharge: A Statistical analysis of climatic and non-climatic factors, J. Hydrology, 568, 816-834. https://doi.org/10.1016/j.jhydrol.2018.11.022
  14. Gurdak, J. J., Roe, C. D., 2010, Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA, Hydrogeol. J., 18, 1747-1772. https://doi.org/10.1007/s10040-010-0672-3
  15. Han, J. S., 1998, Groundwater environment and contamination, Bakyoungsa, 1071.
  16. Hashemi, H., Berndtsson, R., Persson, M., 2015, Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran, Hydrological Sci. J., 60(2), 336-350. https://doi.org/10.1080/02626667.2014.881485
  17. Huang, Y., Yang, Y., Li, J., 2015, Numerical simulation of artificial groundwater recharge for controlling land subsidence, J. Civil Eng., 19(2), 418-426.
  18. Kang, D. H., So, Y. H., Kim, I. K., Oh, S. B., Kim, S. H., Kim, B. W., 2017, Groundwater flow and water budget analyses using HydroGeoSphere model at the facility agricultural complex, J. Eng. Geol., 27(3), 313-322. https://doi.org/10.9720/kseg.2017.3.313
  19. Kim, G. B., Choi, M. R., Seo, M. H., 2018, Site selection method by AHP-based artificial neural network model for groundwater artificial recharge, J. Eng. Geol., 28(4), 741-753. https://doi.org/10.9720/KSEG.2018.4.741
  20. Kim, Y. C., Kim, Y. J., 2010, A Review on the state of the art in the management of aquifer recharge, J. Geol. Soc. Korea, 46(5), 521-533.
  21. Kim, Y. C., Seo, J. A., Ko, K. S., 2012, Trend and barrier in the patents of artificial recharge for securing groundwater, J. Soil & Groundwater Env., 17(3), 59-75. https://doi.org/10.7857/JSGE.2012.17.3.059
  22. Lamontagne, S., Taylor, A. R., Cook, P. G., Crosbie, R. S., Brownbill, R., Williams, R. M., Brunner, P., 2014, Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia), Hydrol. Processes, 28, 1561-1572. https://doi.org/10.1002/hyp.9691
  23. Lee, E. H., Hyun, Y. J., Lee, K. K., Kim, H. S., Jeong, J. H., 2010, Evaluation of well production by a riverbank filtration facility with radial collector well system in Jeungsan-ri, Changnyeong-gun, Korea, J. Soil & Groundwater Env., 15(4), 1-12.
  24. Lee, H. J., Koo, M. H., Kim, Y. C., 2014, Determining optimal locations of an artificial recharge well using an optimization-coupled groundwater flow model, J. Soil Groundw. Environ., 19(3), 66-81. https://doi.org/10.7857/JSGE.2014.19.3.066
  25. Lee, H. J., Koo, M. H., Kim, Y. C., 2015, Global optimization of placement of multiple injection wells with simulated annealing, J. Eng. Geol., 25(1), 2287-7169.
  26. Levison, J., Larocque, M., Ouellet, M. A., 2014, Modeling low-flow bedrock springs providing ecological habitats with climate change scenarios, J. Hydrol., 515, 16-28. https://doi.org/10.1016/j.jhydrol.2014.04.042
  27. Maliva, R. G., Herrmann, R., Coulibaly, K., Guo, W., 2014, Advanced aquifer characterization for optimization of managed aquifer recharge, Environ. Earth Sci., DOI 10.1007/s12665-014-3167-z.
  28. Moon, S. H., Ha, K. C., Kim, Y. C., Koh, D. C., Yoon, H. S., 2014, Examinationfor efficiency of groundwater artificial recharge in alluvial aquifer near Nakdong River of Changweon area, Korea, Econ. Environ. Geol., 47(6), 611-623. https://doi.org/10.9719/EEG.2014.47.6.611
  29. Mustapha, H., Dimitrakopoulos, R., Graf, T., Firoozabadi, A., 2011, An Efficient method for discretizing 3D fractured media for subsurface flow and transport simulations, International J. Numerical Methods in Fluids, 67, 651-670. https://doi.org/10.1002/fld.2383
  30. Noh, O. S., 2010, Surface water subsurface water flow modeling, Master's thesis, Kangwon National University, 79.
  31. Oh, S. H., Kim, Y. C., Koo, M. H., 2011, Modeling artificial groundwater recharge in the Hancheon drainage area, Jeju island, Korea, J. Soil & Groundwater Env., 16(6), 34-45. https://doi.org/10.7857/JSGE.2011.16.6.034
  32. Page, D., Bekele, E., Vanderzalm, J., Sidhu, J., 2018, Managed Aquifer Recharge (MAR) in sustainable urban water management, Water 2018, 10, 239. https://doi.org/10.3390/w10030239
  33. Pitoi, M. M., Patterson, B. M., Furness, A. J., Bastow, T. P., McKinley, A. J., 2011, Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: A column study, Wat. Res., 45, 2550-2560. https://doi.org/10.1016/j.watres.2011.02.018
  34. Rasoulzadeh, A., Ghoorabjiri, M. H., 2014, Comparing hydraulic properties of different forest floors, Hydrol. Processes, 28, 5122-5130. https://doi.org/10.1002/hyp.10006
  35. Rassam, D., Werner, A., 2008, Review of groundwater-surfacewater interaction modeling approaches and their suitability for Australian conditions, eWater Cooperative Research Centre, 52.
  36. Romano, N., Nasta, P., Bogena, H., De Vlta, P., Stellato, L., Vereecken, H., 2018, Monitoring hydrological processes for land and water resources management in a Mediterranean ecosystem: The Alento River catchment observatory, Vadose Zone J., Special Section: Hydrological Observatories, 1-12.
  37. Shanghai, D., Danmai, X., 2012, Groundwater quality variation affected by artificial recharge in Hutuo River bed, Procedia Env. Sci., 12, 555-560. https://doi.org/10.1016/j.proenv.2012.01.317
  38. Singh, L. K., Jha, M. K., Chowdary, V. M., 2017, Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply, J. Cleaner Production, 142, 1436-1456. https://doi.org/10.1016/j.jclepro.2016.11.163
  39. Viessman, W. (Jr.), Lewis, G. L., 1996, Introduction to Hydrology, 4th Edition, Harper Collins College Publisher, New York, 760.
  40. Yin, Y., Sykes, J. F., Normani, S. D., 2015, Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration, J. Hydrol., 527, 77-87. https://doi.org/10.1016/j.jhydrol.2015.04.040